Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999019

ABSTRACT

Reaction of [Ru(H)2(CO)(PPh3)3] 1 with an equimolar amount of pyrrole-2-carboxylic acid (H2L1) leads to the homoleptic chelate derivative k2(O,O)-[RuH(CO)(HL1)(PPh3)2] 2. Prolonged acetonitrile refluxing promotes an unusual k2(O,O)- → k2(N,O)- dynamic chelate conversion, forming a neutral, stable, air- and moisture- insensitive, solvento-species k2(N,O)-[Ru(MeCN)(CO)(L1)(PPh3)2] 3. Analogously, reaction of 1 with the pyrrole-2-carboxyaldehyde (HL2) affords k2(N,O)-[RuH(CO)(HL2)(PPh3)2] 4, 5, as a couple of functional isomers. Optimized reaction conditions such as temperature and solvent polarity allow the isolation of dominant configurations. Structure 5 is a pyrrolide Ru-carbaldehyde, obtained from cyclization of the pendant CHO function, whereas species 4 can be viewed as an ethanoyl-conjugated Ru-pyrrole. Derivatives 3-5 were characterized by single crystal X-ray diffraction, ESI-Ms, IR, and NMR spectroscopy, indicating distinct features for the Ru-bonded pyrrolyl groups. DFT computational results, coplanarity, bond equalization, and electron delocalization along the fused five-membered rings support aromatic features. In accordance with the antisymbiotic trans-influence, both the isolated isomers 4 and 5 disclose CO ligands opposite to N- or O-anionic groups. The quantitative Mayer bond order evidences a stabilizing backbonding effect. Antibacterial and antifungal trials on Gram-positive (Staphylococcus aureus), Gram-negative (Escherichia coli), and Candida albicans were further carried out.

2.
Molecules ; 29(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38202821

ABSTRACT

This review covers the last 25 years of the literature on analogs of suberoylanilide hydroxamic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has been focused on the synthesis and biological activity of compounds where the phenyl group (the surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length. Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many cases showed antiproliferative activity against human cancer cell lines.


Subject(s)
Amides , Histone Deacetylases , Humans , Vorinostat/pharmacology , Amides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Cell Line
3.
Molecules ; 28(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37241724

ABSTRACT

The reaction of mer-(Ru(H)2(CO)(PPh3)3) (1) with one equivalent of thymine acetic acid (THAcH) unexpectedly produces the macrocyclic dimer k1(O), k2(N,O)-(Ru(CO)(PPh3)2THAc)2 (4) and, concomitantly, the doubly coordinated species k1(O), k2(O,O)-(Ru(CO)(PPh3)2THAc) (5). The reaction promptly forms a complicated mixture of Ru-coordinated mononuclear species. With the aim of shedding some light in this context, two plausible reaction paths were proposed by attributing the isolated or spectroscopically intercepted intermediates on the basis of DFT-calculated energetic considerations. The cleavage of the sterically demanding equatorial phosphine in the mer-species releases enough energy to enable self-aggregation, producing the stable, symmetric 14-membered binuclear macrocycle of 4. The k1-acetate iminol (C=N-OH) unit of the mer-tautomer k1(O)-(Ru(CO)(PPh3)2(THAc)) (2) likely exhibits a stronger nucleophilic aptitude than the prevalent N(H)-C(O) amido species, thus accomplishing extra stabilization through concomitant k2(N,O)-thymine heteroleptic side-chelation. Furthermore, both the ESI-Ms and IR simulation spectra validated the related dimeric arrangement in solution, in agreement with the X-ray determination of the structure. The latter showed tautomerization to the iminol form. The 1H NMR spectra in chlorinated solvents of the kinetic mixture showed the simultaneous presence of 4 and the doubly coordinated 5, in rather similar amounts. THAcH added in excess preferentially reacts with 2 or trans-k2(O,O)-(RuH(CO)(PPh3)2THAc) (3) rather than attacking the starting Complex 1, promptly forming the species of 5. The proposed reaction paths were inferred by spectroscopically monitoring the intermediate species, for which the results were strongly dependent on the of conditions the reaction (stoichiometry, solvent polarity, time, and the concentration of the mixture). The selected mechanism proved to be more reliable, due to the final dimeric product stereochemistry.

4.
Molecules ; 28(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37241793

ABSTRACT

Metallodrugs represent a combination of multifunctionalities that are present concomitantly and can act differently on diverse biotargets. Their efficacy is often related to the lipophilic features exhibited both by long carbo-chains and the phosphine ligands. Three Ru(II) complexes containing hydroxy stearic acids (HSAs) were successfully synthesized in order to evaluate possible synergistic effects between the known antitumor activity of HSA bio-ligands and the metal center. HSAs were reacted with [Ru(H)2CO(PPh3)3] selectively affording O,O-carboxy bidentate complexes. The organometallic species were fully characterized spectroscopically using ESI-MS, IR, UV-Vis, and NMR techniques. The structure of the compound Ru-12-HSA was also determined using single crystal X-ray diffraction. The biological potency of ruthenium complexes (Ru-7-HSA, Ru-9-HSA, and Ru-12-HSA) was studied on human primary cell lines (HT29, HeLa, and IGROV1). To obtain detailed information about anticancer properties, tests for cytotoxicity, cell proliferation, and DNA damage were performed. The results demonstrate that the new ruthenium complexes, Ru-7-HSA and Ru-9-HSA, possess biological activity. Furthermore, we observed that the Ru-9-HSA complex shows increased antitumor activity on colon cancer cells, HT29.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Ruthenium , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ruthenium/chemistry , Ligands , HeLa Cells , Cell Proliferation , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Cell Line, Tumor
5.
Molecules ; 27(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35458594

ABSTRACT

A series of regioisomers of the hydroxystearic acid (HSA) was prepared, and the effect of the position of the hydroxyl group along the chain on a panel of human cancer cell lines was investigated. Among the various regioisomers, those carrying the hydroxyl at positions 5, 7, and 9 had growth inhibitor activity against various human tumor cell lines, including CaCo-2, HT29, HeLa, MCF7, PC3, and NLF cells. 10-HSA and 11-HSA showed a very weak effect. 8-HSA did not show inhibitory activity in all cell lines. The biological role of 7-HSA and 9-HSA is widely recognized, while little is known about the effects of 5-HSA. Therefore, the biological effects of 5-HSA in HeLa, HT29, MCF7, and NLF cell lines were investigated using the Livecyte's ptychography technology, which allows correlating changes in proliferation, motility, and morphology as a function of treatment at the same time. 5-HSA not only reduces cell proliferation but also induces changes in cell displacement, directionality, and speed. It is important to characterize the biological effects of 5-HSA, this molecule being an important component of fatty acyl esters of hydroxy fatty acids (FAHFA), a class of endogenous mammalian lipids with noticeable anti-diabetic and anti-inflammatory effects.


Subject(s)
Fatty Acids , Neoplasms , Animals , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Esters/pharmacology , Fatty Acids/pharmacology , Humans , Mammals
6.
Molecules ; 25(2)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963693

ABSTRACT

Nine compounds bearing pyridinyl (or piperidinyl, benzimidazolyl, benzotriazolyl) groups bound to an azelayl moiety through an amide bond were synthesized. The structural analogy with some histone deacetylase inhibitors inspired their syntheses, seeking new selective histone deacetylase inhibitors (HDACi). The azelayl moiety recalls part of 9-hydroxystearic acid, a cellular lipid showing antiproliferative activity toward cancer cells with HDAC as a molecular target. Azelayl derivatives bound to a benzothiazolyl moiety further proved to be active as HDACi. The novel compounds were tested on a panel of both normal and tumor cell lines. Non-specific induction of cytotoxicity was observed in the normal cell line, while three of them induced a biological effect only on the osteosarcoma (U2OS) cell line. One of them induced a change in nuclear shape and size. Cell-cycle alterations are associated with post-transcriptional modification of both H2/H3 and H4 histones. In line with recent studies, revealing unexpected HDAC7 function in osteoclasts, molecular docking studies on the active molecules predicted their proneness to interact with HDAC7. By reducing side effects associated with the action of the first-generation inhibitors, the herein reported compounds, thus, sound promising as selective HDACi.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Aza Compounds/chemistry , Dicarboxylic Acids/chemistry , Heterocyclic Compounds/chemistry , Bone Neoplasms , Cell Line, Tumor , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Humans , Hydrogen Bonding , Models, Molecular , Molecular Conformation , Molecular Structure , Osteosarcoma , Structure-Activity Relationship
7.
RSC Adv ; 10(57): 34670-34680, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-35514428

ABSTRACT

The SEAr/SNAr reaction between 7-chloro-4,6-dinitrobenzofuroxan (ClDNBF) and 2-morpholinyl-, 2-piperidinyl-, or 2-pyrrolidinylthiazole afforded unexpectedly two isomeric products, bearing the benzofuroxanyl moiety bound to the C-5 carbon atom of the thiazole ring. The relative ratio for the two isomers was dependent on temperature and solvent, suggesting the occurrence of an equilibrium between the two novel species. In order to investigate their structure and to design a plausible mechanistic pathway, a series of synthetic and spectroscopic experiments was planned. The isomer's structure was unambigously assigned when the reduction of furoxanyl to the furazanyl ring of the products gave exclusively a single species whose NMR data were coincident with those obtained by reacting the starting 2-aminothiazole derivatives with the 7-chloro-4,6-dinitrobenzofurazan (ClDNBZ). Possible mechanistic pathways might involve N-1-/N-3 oxide tautomerism or Boulton-Katritzky rearrangement and the current study is the first attempt to compare these two reactions. The data collected agree with the first one and DFT calculations permitted also a significant correlation with 13C NMR experimental data and the assignment of the structure of each isomer. Finally, only one Meisenheimer intermediate for each electrophile/nucleophile combination was isolated by coupling the 2-aminothiazole derivatives with 4,6-dinitrobenzofuroxan (DNBF).

8.
Molecules ; 24(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31619025

ABSTRACT

9-Hydroxystearic acid (9-HSA) is an endogenous cellular lipid that possesses antiproliferative and selective effects against cancer cells. A series of derivatives were synthesized in order to investigate the effect of the substituent in position 9 and on the methyl ester functionality on the biological activity. The two separate enantiomers of methyl 9-hydroxystearate and of methyl 9-aminostearate showed antiproliferative activity against the HT29 cell line. This indicates the importance of position 9 groups being able to make hydrogen bonding with the molecular target. Further, this effect must be preserved when the carboxy group of 9-HSA is esterified. The biological tests showed that the amines, contrarily to methyl esters, resulted in cytotoxicity. A deep investigation on the effect of methyl (R)-9-hydroxystearate on HT29 cells showed an antiproliferative effect acting through the CDKN1A and MYCBP gene expression.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Stearic Acids/chemical synthesis , Stearic Acids/pharmacology , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , HT29 Cells , Humans , Molecular Structure , Stearic Acids/chemistry , Structure-Activity Relationship
9.
Molecules ; 23(1)2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29342986

ABSTRACT

The reaction between bis(2-benzothiazolyl)ketone and vinyl Grignard reagents bearing different substituents on the vinyl moiety gave the product derived from attack on the carbonylic carbon- and/or oxygen-atom. The regioselectivity of the attack depends on the kind of substituents bound to the vinylic carbon atoms and on their relative position. The reaction between vinylmagnesium bromide and 2-methyl-1-propenylmagnesium bromide was carried out under different experimental conditions and in the presence of radical scavengers. The results indicate a plausible mechanistic pathway involving radical intermediates in the case of O-alkylation, but a polar ones in the case of classic C-alkylation. This agrees with our previous reports indicating a key role played by the delocalization ability of the substituents bound to the carbonyl group in driving the regioselectivity of the vinylmagnesium bromide attack towards O-alkylation. Further support of this was obtained by diffractometric analysis of four distinct bis(heteroaryl)ketones.


Subject(s)
Ketones/chemistry , Triazoles/chemistry , Vinyl Compounds/chemistry , Alkylation , Carbon/chemistry , Metals/chemistry , Models, Molecular , Molecular Structure , Oxygen/chemistry , Solvents/chemistry , Stereoisomerism , X-Ray Diffraction
10.
RSC Adv ; 8(72): 41663-41674, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-35559277

ABSTRACT

The C-C coupling reaction between neutral aromatic carbon nucleophiles such as 1,3,5-triamino- and 1,3,5-trihydroxy-benzene derivatives and 7-chloro-4,6-dinitrobenzofuroxan (Cl-DNBF) or 7-chloro-4,6-dinitrobenzofurazan (Cl-DNBZ) gave in high yield the corresponding conjugated structures, which are of potential interest in the materials field. When chlorine is absent on the electrophile, as in 4,6-dinitrobenzofurazan (DNBZ), the reaction with 1,3,5-triaminobenzene derivatives produces Wheland-Meisenheimer (WM) zwitterionic intermediates, intercepted and fully characterized via NMR at low temperature, whereas stable Meisenheimer complexes (M) were isolated in the reaction of phloroglucinol with 1,3,5-trimethoxybenzene. The latter also gave exclusively M complexes when reacted with 4,6-dinitrobenzofuroxan (DNBF), or 4,6-dinitrotetrazolopyridine (DNTP). The detection of WM or M intermediates can be rationalized by invoking the substituent stabilization ability of the positive charge in WM intermediates, on going from neutral carbon nucleophiles 1,3,5-triaminobenzenes to 1,3,5-trihydroxybenzene derivatives. Furthermore, variable-temperature NMR experiments on the M intermediates gave insights into the rotational barrier about the newly formed C-C bond.

11.
Molecules ; 22(5)2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28445410

ABSTRACT

Aromatic substitution reactions between 1,3-diaminobenzene and chloronitrobenzofurazan derivatives have never been reported so far. The aim of the current study was to synthesize novel electron-donor and -acceptor architectures of interest in applied fields and to provide new insights on the nucleophilic behavior of 1,3-diaminobenzenes. The reaction of 1,3-dipiperidinyl-, 1,3-dimorpholinyl-, 1,3-dipyrrolidinyl-, or 1,3-dimethylamino-benzene with 7-chloro-4,6-dinitrobenzofuroxan or with a series of chloro-nitrobenzofurazans has been carried out in mild conditions. The partners reactivity has been investigated by monitoring the reaction course through ¹H-NMR spectroscopy. The reaction occurred in a regioselective way, providing in good yields the novel C-C coupling compounds. Indications on the reactivity behavior for the studied nucleophiles have been relieved.


Subject(s)
Benzene Derivatives/chemistry , Benzofurans/chemistry , Diamines/chemistry , Proton-Phosphate Symporters , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...