Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36903693

ABSTRACT

Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 µg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.

2.
Pharmaceutics ; 15(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36678755

ABSTRACT

Redox-responsive and magnetic nanomaterials are widely used in tumor treatment separately, and while the application of their combined functionalities is perspective, exactly how such synergistic effects can be implemented is still unclear. This report investigates the internalization dynamics of magnetic redox-responsive nanoparticles (MNP-SS) and their cytotoxicity toward PC-3 and 4T1 cell lines. It is shown that MNP-SS synthesized by covalent grafting of polyethylene glycol (PEG) on the magnetic nanoparticle (MNP) surface via SS-bonds lose their colloidal stability and aggregate fully in a solution containing DTT, and partially in conditioned media, whereas the PEGylated MNP (MNP-PEG) without S-S linker control remains stable under the same conditions. Internalized MNP-SS lose the PEG shell more quickly, causing enhanced magnetic core dissolution and thus increased toxicity. This was confirmed by fluorescence microscopy using MNP-SS dual-labeled by Cy3 via labile disulfide, and Cy5 via a rigid linker. The dyes demonstrated a significant difference in fluorescence dynamics and intensity. Additionally, MNP-SS demonstrate quicker cellular uptake compared to MNP-PEG, as confirmed by TEM analysis. The combination of disulfide bonds, leading to faster dissolution of the iron oxide core, and the high-oxidative potential Fe3+ ions can synergically enhance oxidative stress in comparison with more stable coating without SS-bonds in the case of MNP-PEG. It decreases the cancer cell viability, especially for the 4T1, which is known for being sensitive to ferroptosis-triggering factors. In this work, we have shown the effect of redox-responsive grafting of the MNP surface as a key factor affecting MNP-internalization rate and dissolution with the release of iron ions inside cancer cells. This kind of synergistic effect is described for the first time and can be used not only in combination with drug delivery, but also in treatment of tumors responsive to ferroptosis.

3.
Materials (Basel) ; 16(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614686

ABSTRACT

In this work, complex studies of the structure and magnetic properties of SrFe12-xInxO19 powders obtained by the mechanochemical and citrate methods were carried out. The solubility of In in strontium hexaferrite SrFe12O19 at 1200 °C was determined. The structure and properties of the powders were studied using X-ray diffraction analysis, Mössbauer spectroscopy and scanning electron microscopy. Measurements of magnetic properties in magnetic fields up to 1600 kA/m were also performed. Additionally, the hyperthermia effect was investigated. The possibility of controlling the coercivity of the samples in the range from 188.9 kA/m to 22.3 kA/m and saturation magnetization from 63.5 A·m2/kg to 44.2 A·m2/kg with an increase in the degree of In doping was also demonstrated. Investigation of the magnetic hyperthermia of the samples was carried out by temperature measurement with an IR camera when they were introduced into alternating magnetic fields of various frequencies (144, 261 and 508 kHz) and amplitudes (between 11.96 and 19.94 kA/m). According to the study result, there was detected the heating of the SrFe12-xInxO19 sample (x = 1.7). The highest values of magnetic hyperthermia of the sample were observed in a 19.94 kA/m magnetic field and a frequency of 261 kHz. At a concentration of 56.67 g/L, the sample was heated from 23 to 41 °C within 2 min. The parameters SLP (specific loss power) and ILP (intrinsic loss power) were calculated.

SELECTION OF CITATIONS
SEARCH DETAIL
...