Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 14(9): 3693-3707, 2024.
Article in English | MEDLINE | ID: mdl-38948062

ABSTRACT

Background: Immune checkpoint inhibitors (ICI) are routinely used in advanced clear cell renal cell carcinoma (ccRCC). However, a substantial group of patients does not respond to ICI therapy. Radiation is a promising approach to increase ICI response rates since it can generate anti-tumor immunity. Targeted radionuclide therapy (TRT) is a systemic radiation treatment, ideally suited for precision irradiation of metastasized cancer. Therefore, the aim of this study is to explore the potential of combined TRT, targeting carbonic anhydrase IX (CAIX) which is overexpressed in ccRCC, using [177Lu]Lu-DOTA-hG250, and ICI for the treatment of ccRCC. Methods: In this study, we evaluated the therapeutic and immunological action of [177Lu]Lu-DOTA-hG250 combined with aPD-1/a-CTLA-4 ICI. First, the biodistribution of [177Lu]Lu-DOTA-hG250 was investigated in BALB/cAnNRj mice bearing Renca-CAIX or CT26-CAIX tumors. Renca-CAIX and CT26-CAIX tumors are characterized by poor versus extensive T-cell infiltration and homogeneous versus heterogeneous PD-L1 expression, respectively. Tumor-absorbed radiation doses were estimated through dosimetry. Subsequently, [177Lu]Lu-DOTA-hG250 TRT efficacy with and without ICI was evaluated by monitoring tumor growth and survival. Therapy-induced changes in the tumor microenvironment were studied by collection of tumor tissue before and 5 or 8 days after treatment and analyzed by immunohistochemistry, flow cytometry, and RNA profiling. Results: Biodistribution studies showed high tumor uptake of [177Lu]Lu-DOTA-hG250 in both tumor models. Dose escalation therapy studies in Renca-CAIX tumor-bearing mice demonstrated dose-dependent anti-tumor efficacy of [177Lu]Lu-DOTA-hG250 and remarkable therapeutic synergy including complete remissions when a presumed subtherapeutic TRT dose (4 MBq, which had no significant efficacy as monotherapy) was combined with aPD-1+aCTLA-4. Similar results were obtained in the CT26-CAIX model for 4 MBq [177Lu]Lu-DOTA-hG250 + a-PD1. Ex vivo analyses of treated tumors revealed DNA damage, T-cell infiltration, and modulated immune signaling pathways in the TME after combination treatment. Conclusions: Subtherapeutic [177Lu]Lu-DOTA-hG250 combined with ICI showed superior therapeutic outcome and significantly altered the TME. Our results underline the importance of investigating this combination treatment for patients with advanced ccRCC in a clinical setting. Further investigations should focus on how the combination therapy should be optimally applied in the future.


Subject(s)
Carbonic Anhydrase IX , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Animals , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/therapy , Carcinoma, Renal Cell/pathology , Mice , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Kidney Neoplasms/radiotherapy , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase IX/antagonists & inhibitors , Humans , Cell Line, Tumor , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Radioisotopes/administration & dosage , Lutetium/therapeutic use , Female , Antigens, Neoplasm/metabolism , Tissue Distribution , Tumor Microenvironment/drug effects , Tumor Protein, Translationally-Controlled 1 , Xenograft Model Antitumor Assays , Combined Modality Therapy/methods , Mice, Inbred BALB C , Antibodies, Monoclonal
2.
Cancer Metab ; 12(1): 13, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702787

ABSTRACT

BACKGROUND: Hypoxia is a common feature of many solid tumors and causes radiotherapy and immunotherapy resistance. Pharmacological inhibition of oxidative phosphorylation (OXPHOS) has emerged as a therapeutic strategy to reduce hypoxia. However, the OXPHOS inhibitors tested in clinical trials caused only moderate responses in hypoxia alleviation or trials were terminated due to dose-limiting toxicities. To improve the therapeutic benefit, FDA approved OXPHOS inhibitors (e.g. atovaquone) were conjugated to triphenylphosphonium (TPP+) to preferentially target cancer cell's mitochondria. In this study, we evaluated the hypoxia reducing effects of several mitochondria-targeted OXPHOS inhibitors and compared them to non-mitochondria-targeted OXPHOS inhibitors using newly developed spheroid models for diffusion-limited hypoxia. METHODS: B16OVA murine melanoma cells and MC38 murine colon cancer cells expressing a HIF-Responsive Element (HRE)-induced Green Fluorescent Protein (GFP) with an oxygen-dependent degradation domain (HRE-eGFP-ODD) were generated to assess diffusion-limited hypoxia dynamics in spheroids. Spheroids were treated with IACS-010759, atovaquone, metformin, tamoxifen or with mitochondria-targeted atovaquone (Mito-ATO), PEGylated mitochondria-targeted atovaquone (Mito-PEG-ATO) or mitochondria-targeted tamoxifen (MitoTam). Hypoxia dynamics were followed and quantified over time using the IncuCyte Zoom Live Cell-Imaging system. RESULTS: Hypoxic cores developed in B16OVA.HRE and MC38.HRE spheroids within 24 h hours after seeding. Treatment with IACS-010759, metformin, atovaquone, Mito-PEG-ATO and MitoTam showed a dose-dependent reduction of hypoxia in both B16OVA.HRE and MC38.HRE spheroids. Mito-ATO only alleviated hypoxia in MC38.HRE spheroids while tamoxifen was not able to reduce hypoxia in any of the spheroid models. The mitochondria-targeted OXPHOS inhibitors demonstrated stronger anti-hypoxic effects compared to the non-mito-targeted OXPHOS inhibitors. CONCLUSIONS: We successfully developed a high-throughput spheroid model in which hypoxia dynamics can be quantified over time. Using this model, we showed that the mitochondria-targeted OXPHOS inhibitors Mito-ATO, Mito-PEG-ATO and MitoTam reduce hypoxia in tumor cells in a dose-dependent manner, potentially sensitizing hypoxic tumor cells for radiotherapy.

3.
Mol Pharm ; 20(4): 2245-2255, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36882391

ABSTRACT

Limited diffusion of oxygen in combination with increased oxygen consumption leads to chronic hypoxia in most solid malignancies. This scarcity of oxygen is known to induce radioresistance and leads to an immunosuppressive microenvironment. Carbonic anhydrase IX (CAIX) is an enzyme functioning as a catalyzer for acid export in hypoxic cells and is an endogenous biomarker for chronic hypoxia. The aim of this study is to develop a radiolabeled antibody that recognizes murine CAIX to visualize chronic hypoxia in syngeneic tumor models and to study the immune cell population in these hypoxic areas. An anti-mCAIX antibody (MSC3) was conjugated to diethylenetriaminepentaacetic acid (DTPA) and radiolabeled with indium-111 (111In). CAIX expression on murine tumor cells was determined using flow cytometry, and in vitro affinity of [111In]In-MSC3 was analyzed in a competitive binding assay. Ex vivo biodistribution studies were performed to determine in vivo radiotracer distribution. CAIX+ tumor fractions were determined by mCAIX microSPECT/CT, and the tumor microenvironment was analyzed using immunohistochemistry and autoradiography. We showed that [111In]In-MSC3 binds to CAIX-expressing (CAIX+) murine cells in vitro and accumulates in CAIX+ areas in vivo. We optimized the use of [111In]In-MSC3 for preclinical imaging such that it can be applied in syngeneic mouse models and showed that we can quantitatively distinguish between tumor models with varying CAIX+ fractions by ex vivo analyses and in vivo mCAIX microSPECT/CT. Analysis of the tumor microenvironment identified these CAIX+ areas as less infiltrated by immune cells. Together these data demonstrate that mCAIX microSPECT/CT is a sensitive technique to visualize hypoxic CAIX+ tumor areas that exhibit reduced infiltration of immune cells in syngeneic mouse models. In the future, this technique may enable visualization of CAIX expression before or during hypoxia-targeted or hypoxia-reducing treatments. Thereby, it will help optimize immuno- and radiotherapy efficacy in translationally relevant syngeneic mouse tumor models.


Subject(s)
Hypoxia , Neoplasms , Animals , Mice , Carbonic Anhydrase IX/metabolism , Tissue Distribution , Hypoxia/metabolism , Antigens, Neoplasm/metabolism , Oxygen , Cell Line, Tumor , Tumor Microenvironment
4.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33707312

ABSTRACT

In response to the recent paper by Chen et al investigating the triple combination of oxidative phosphorylation inhibition, immunotherapy and radiotherapy, we would like to stress that after irradiation, a strong reduction in hypoxia (within 24 hours) can be followed by a strong increase (several days). This is especially the case with larger fraction sizes of radiation therapy, which are often applied in combination with immunotherapy, and is likely to be tumor dependent. All together this may strongly affect the synergistic effect of such a triple combination therapy.


Subject(s)
Neoplasms , Oxidative Phosphorylation , Humans , Hypoxia , Immunotherapy , Kinetics , Neoplasms/drug therapy , Neoplasms/radiotherapy
5.
Clin Cancer Res ; 27(11): 2970-2978, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33419779

ABSTRACT

As tumors grow, they upregulate glycolytic and oxidative metabolism to support their increased and altered energetic demands. These metabolic changes have major effects on the tumor microenvironment. One of the properties leading to this aberrant metabolism is hypoxia, which occurs when tumors outgrow their often-chaotic vasculature. This scarcity of oxygen is known to induce radioresistance but can also have a disrupting effect on the antitumor immune response. Hypoxia inhibits immune effector cell function, while immune cells with a more suppressing phenotype become more active. Therefore, hypoxia strongly affects the efficacy of both radiotherapy and immunotherapy, as well as this therapy combination. Inhibition of oxidative phosphorylation (OXPHOS) is gaining interest for its ability to combat tumor hypoxia, and there are strong indications that this results in a reactivation of the immune response. This strategy decreases oxygen consumption, leading to better oxygenation of hypoxic tumor areas and eventually an increase in immunogenic cell death induced by radio-immunotherapy combinations. Promising preclinical improvements in radio- and immunotherapy efficacy have been observed by the hypoxia-reducing effect of OXPHOS inhibitors and several compounds are currently in clinical trials for their anticancer properties. Here, we will review the pharmacologic attenuation of tumor hypoxia using OXPHOS inhibitors, with emphasis on their impact on the intrinsic antitumor immune response and how this affects the efficacy of (combined) radio- and immunotherapy.


Subject(s)
Immunotherapy/methods , Neoplasms/metabolism , Neoplasms/therapy , Oxidative Phosphorylation/drug effects , Oxidative Phosphorylation/radiation effects , Radiotherapy/methods , Combined Modality Therapy , Humans , Neoplasms/immunology , Neoplasms/physiopathology , Tumor Hypoxia , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...