Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 131(10): 100201, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37739349

ABSTRACT

Quantum nonlocality can be demonstrated without inputs (i.e., each party using a fixed measurement setting) in a network with independent sources. Here we consider this effect on ring networks, and show that the underlying quantum strategy can be partially characterized, or self-tested, from observed correlations. Applying these results to the triangle network allows us to show that the nonlocal distribution of Renou et al. [Phys. Rev. Lett. 123, 140401 (2019)PRLTAO0031-900710.1103/PhysRevLett.123.140401] requires that (i) all sources produce a minimal amount of entanglement, (ii) all local measurements are entangled, and (iii) each local outcome features a minimal entropy. Hence we show that the triangle network allows for genuine network quantum nonlocality and certifiable randomness.

2.
Phys Rev Lett ; 123(14): 140401, 2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31702202

ABSTRACT

Quantum networks allow in principle for completely novel forms of quantum correlations. In particular, quantum nonlocality can be demonstrated here without the need of having various input settings, but only by considering the joint statistics of fixed local measurement outputs. However, previous examples of this intriguing phenomenon all appear to stem directly from the usual form of quantum nonlocality, namely via the violation of a standard Bell inequality. Here we present novel examples of "quantum nonlocality without inputs," which we believe represent a new form of quantum nonlocality, genuine to networks. Our simplest examples, for the triangle network, involve both entangled states and joint entangled measurements. A generalization to any odd-cycle network is also presented.

3.
Phys Rev Lett ; 123(7): 070403, 2019 Aug 16.
Article in English | MEDLINE | ID: mdl-31491120

ABSTRACT

A quantum network consists of independent sources distributing entangled states to distant nodes which can then perform entangled measurements, thus establishing correlations across the entire network. But how strong can these correlations be? Here we address this question, by deriving bounds on possible quantum correlations in a given network. These bounds are nonlinear inequalities that depend only on the topology of the network. We discuss in detail the notably challenging case of the triangle network. Moreover, we conjecture that our bounds hold in general no-signaling theories. In particular, we prove that our inequalities for the triangle network hold when the sources are arbitrary no-signaling boxes which can be wired together. Finally, we discuss an application of our results for the device-independent characterization of the topology of a quantum network.

SELECTION OF CITATIONS
SEARCH DETAIL
...