Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 94: 104692, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37451904

ABSTRACT

BACKGROUND: People with Down syndrome (DS) show clinical signs of accelerated ageing. Causative mechanisms remain unknown and hypotheses range from the (essentially untreatable) amplified-chromosomal-instability explanation, to potential actions of individual supernumerary chromosome-21 genes. The latter explanation could open a route to therapeutic amelioration if the specific over-acting genes could be identified and their action toned-down. METHODS: Biological age was estimated through patterns of sugar molecules attached to plasma immunoglobulin-G (IgG-glycans, an established "biological-ageing-clock") in n = 246 individuals with DS from three European populations, clinically characterised for the presence of co-morbidities, and compared to n = 256 age-, sex- and demography-matched healthy controls. Isogenic human induced pluripotent stem cell (hiPSCs) models of full and partial trisomy-21 with CRISPR-Cas9 gene editing and two kinase inhibitors were studied prior and after differentiation to cerebral organoids. FINDINGS: Biological age in adults with DS is (on average) 18.4-19.1 years older than in chronological-age-matched controls independent of co-morbidities, and this shift remains constant throughout lifespan. Changes are detectable from early childhood, and do not require a supernumerary chromosome, but are seen in segmental duplication of only 31 genes, along with increased DNA damage and decreased levels of LaminB1 in nucleated blood cells. We demonstrate that these cell-autonomous phenotypes can be gene-dose-modelled and pharmacologically corrected in hiPSCs and derived cerebral organoids. Using isogenic hiPSC models we show that chromosome-21 gene DYRK1A overdose is sufficient and necessary to cause excess unrepaired DNA damage. INTERPRETATION: Explanation of hitherto observed accelerated ageing in DS as a developmental progeroid syndrome driven by DYRK1A overdose provides a target for early pharmacological preventative intervention strategies. FUNDING: Main funding came from the "Research Cooperability" Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014-2020, Project PZS-2019-02-4277, and the Wellcome Trust Grants 098330/Z/12/Z and 217199/Z/19/Z (UK). All other funding is described in details in the "Acknowledgements".


Subject(s)
Down Syndrome , Induced Pluripotent Stem Cells , Adult , Humans , Aging , Cell Differentiation , Down Syndrome/genetics , Dyrk Kinases
2.
Aging Cell ; 17(2)2018 04.
Article in English | MEDLINE | ID: mdl-29266667

ABSTRACT

Calorie restriction (CR) is a dietary regimen that supports healthy aging. In this study, we investigated the systemic and liver-specific responses caused by a diet switch to a medium-fat (MF) diet in 24-month-old lifelong, CR-exposed mice. This study aimed to increase the knowledge base on dietary alterations of gerontological relevance. Nine-week-old C57BL/6J mice were exposed either to a control, CR, or MF diet. At the age of 24 months, a subset of mice of the CR group was transferred to ad libitumMF feeding (CR-MF). The mice were sacrificed at the age of 28 months, and then, biochemical and molecular analyses were performed. Our results showed that, despite the long-term exposure to the CR regimen, mice in the CR-MF group displayed hyperphagia, rapid weight gain, and hepatic steatosis. However, no hepatic fibrosis/injury or alteration in CR-improved survival was observed in the diet switch group. The liver transcriptomic profile of CR-MF mice largely shifted to a profile similar to the MF-fed animals but leaving ~22% of the 1,578 differentially regulated genes between the CR and MF diet groups comparable with the expression of the lifelong CR group. Therefore, although the diet switch was performed at an old age, the CR-MF-exposed mice showed plasticity in coping with the challenge of a MF diet without developing severe liver pathologies.


Subject(s)
Caloric Restriction/methods , DNA Methylation/genetics , Transcriptome/genetics , Aging , Animals , Diet , Dietary Fats , Humans , Male , Mice , Mice, Inbred C57BL
3.
Mech Ageing Dev ; 165(Pt B): 129-138, 2017 07.
Article in English | MEDLINE | ID: mdl-28038993

ABSTRACT

Inflammaging is a recent theory of aging originally proposed in 2000 where data and conceptualizations regarding the aging of the immune system (immunosenescence) and the evolution of immune responses from invertebrates to mammals converged. This theory has received an increasing number of citations and experimental confirmations. Here we present an updated version of inflammaging focused on omics data - particularly on glycomics - collected on centenarians, semi-supercentenarians and their offspring. Accordingly, we arrived to the following conclusions: i) inflammaging has a structure where specific combinations of pro- and anti-inflammatory mediators are involved; ii) inflammaging is systemic and more complex than we previously thought, as many organs, tissues and cell types participate in producing pro- and anti-inflammatory stimuli defined "molecular garbage"; iii) inflammaging is dynamic, can be propagated locally to neighboring cells and systemically from organ to organ by circulating products and microvesicles, and amplified by chronic age-related diseases constituting a "local fire", which in turn produces additional inflammatory stimuli and molecular garbage; iv) an integrated Systems Medicine approach is urgently needed to let emerge a robust and highly informative set/combination of omics markers able to better grasp the complex molecular core of inflammaging in elderly and centenarians.


Subject(s)
Cell-Derived Microparticles , Genomics , Inflammation Mediators/metabolism , Longevity/genetics , Cell-Derived Microparticles/genetics , Cell-Derived Microparticles/metabolism , Humans , Inflammation/genetics , Inflammation/metabolism
4.
Aging Cell ; 16(2): 262-272, 2017 04.
Article in English | MEDLINE | ID: mdl-27995756

ABSTRACT

To understand why livers from aged donors are successfully used for transplants, we looked for markers of liver aging in 71 biopsies from donors aged 12-92 years before transplants and in 11 biopsies after transplants with high donor-recipient age-mismatch. We also assessed liver function in 36 age-mismatched recipients. The major findings were the following: (i) miR-31-5p, miR-141-3p, and miR-200c-3p increased with age, as assessed by microRNAs (miRs) and mRNA transcript profiling in 12 biopsies and results were validated by RT-qPCR in a total of 58 biopsies; (ii) telomere length measured by qPCR in 45 samples showed a significant age-dependent shortage; (iii) a bioinformatic approach combining transcriptome and miRs data identified putative miRs targets, the most informative being GLT1, a glutamate transporter expressed in hepatocytes. GLT1 was demonstrated by luciferase assay to be a target of miR-31-5p and miR-200c-3p, and both its mRNA (RT-qPCR) and protein (immunohistochemistry) significantly decreased with age in liver biopsies and in hepatic centrilobular zone, respectively; (iv) miR-31-5p, miR-141-3p and miR-200c-3p expression was significantly affected by recipient age (older environment) as assessed in eleven cases of donor-recipient extreme age-mismatch; (v) the analysis of recipients plasma by N-glycans profiling, capable of assessing liver functions and biological age, showed that liver function recovered after transplants, independently of age-mismatch, and recipients apparently 'rejuvenated' according to their glycomic age. In conclusion, we identified new markers of aging in human liver, their relevance in donor-recipient age-mismatches in transplantation, and offered positive evidence for the use of organs from old donors.


Subject(s)
Aging/genetics , Glutamate Plasma Membrane Transport Proteins/metabolism , Liver Transplantation , Liver/metabolism , MicroRNAs/metabolism , Tissue Donors , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Excitatory Amino Acid Transporter 2 , Gene Expression Profiling , Gene Expression Regulation, Developmental , HEK293 Cells , Humans , Immunohistochemistry , Luciferases/metabolism , MicroRNAs/genetics , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Telomere/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism , Young Adult
5.
Oncotarget ; 7(7): 7455-68, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26840264

ABSTRACT

The pro- or anti-inflammatory activities of immunoglobulins G (IgGs) are controlled by the structure of the glycan N-linked to Asn297 of their heavy chain. The age-associated low grade inflammation (inflammaging) is associated with increased plasmatic levels of agalactosylated IgGs terminating with N-acetylglucosamine (IgG-G0) whose biogenesis has not been fully explained. Although the biosynthesis of glycans is in general mediated by glycosyltransferases associated with internal cell membranes, the extracellular glycosylation of circulating glycoproteins mediated by plasmatic glycosyltransferases has been recently demonstrated. In this study we have investigated the relationship between plasmatic glycosyltransferases, IgG glycosylation and inflammatory and aging markers. In cohorts of individuals ranging from infancy to centenarians we determined the activity of plasmatic ß4 galactosyltransferase(s) (B4GALTs) and of α2,6-sialyltransferase ST6GAL1, the glycosylation of IgG, the GlycoAge test (a glycosylation-based marker of aging) and the plasma level of inflammatory and liver damage markers. Our results show that: 1) plasmatic B4GALTs activity is a new marker of aging, showing a linear increase throughout the whole age range. 2) plasmatic ST6GAL1 was high only in children and in people above 80, showing a quadratic relationship with age. 3) Neither plasmatic glycosyltransferase correlated with markers of liver damage. 4) plasmatic ST6GAL1 showed a positive association with acute phase proteins in offspring of short lived parents, but not in centenarians or in their offspring. 5) Although the glycosylation of IgGs was not correlated with the level of the two plasmatic glycosyltransferases, it showed progressive age-associated changes consistent with a shift toward a pro-inflammatory glycotype.


Subject(s)
Aging/physiology , Antigens, CD/blood , Biomarkers/blood , Galactosyltransferases/blood , Immunoglobulin G/blood , Inflammation/diagnosis , Liver Diseases/diagnosis , Sialyltransferases/blood , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Glycosylation , Humans , Infant , Infant, Newborn , Inflammation/blood , Liver Diseases/blood , Male , Middle Aged , Prognosis , Young Adult
6.
J Proteome Res ; 14(10): 4232-45, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26334954

ABSTRACT

In recent years, plasma N-glycans have emerged as biomarkers for health and disease. Here, we studied N-glycomic changes in Down Syndrome (DS). Because of the progeroid phenotype of DS, we focused on the dissection of syndrome- and aging-associated glycomic changes, as well as the interaction thereof. We analyzed the plasma N-glycome of 76 DS persons, 37 siblings (DSS), and 42 mothers (DSM) of DS persons by DNA-sequencer-aided, fluorophore-assisted-carbohydrate-electrophoresis, as well as by matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS). The results showed an overall decrease of galactosylation and α2,3 sialylation, a concomitant increase of the level of fucosylated N-glycans as well as of monogalactosylated diantennary N-glycans in DS, while the GlycoAgeTest and the ratio of the two core-fucosylated, monogalactosylated diantennary isomers (galactose positioned on α1,6 arm versus α1,3 arm) were the strongest DS discriminators. Hypogalactosylation is a characteristic of both DS and aging of control individuals. A decrease in α2,3-sialylated species is also common to DS and aging of controls. However, regarding to α2,6-sialylated tri- and tetragalactosylated N-glycan species, we found those to be lowered in DS but showed an increase with age in the same persons, while these glycans were not affected by aging in control individuals. In conclusion, we identified specific glycomic changes associated with DS, aging in DS, as well as aging in controls, identifying glycomic features in line with accelerated aging in DS. Notably, our data demonstrate an aging phenotype in DS which only in part overlaps with aging in controls but reveals DS-specificity.


Subject(s)
Aging/blood , Down Syndrome/blood , Glycomics/methods , Polysaccharides/blood , Adolescent , Adult , Aged , Aged, 80 and over , Carbohydrate Metabolism , Carbohydrate Sequence , Case-Control Studies , Child , Down Syndrome/pathology , Female , Fucose/blood , Fucose/chemistry , Galactose/blood , Galactose/chemistry , Glycosylation , Humans , Male , Middle Aged , Molecular Sequence Data , Mothers , Polysaccharides/chemistry , Sialic Acids/blood , Sialic Acids/chemistry , Siblings , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
8.
PLoS One ; 10(3): e0119983, 2015.
Article in English | MEDLINE | ID: mdl-25793407

ABSTRACT

BACKGROUND: Glycosylation, i.e the enzymatic addition of oligosaccharides (or glycans) to proteins and lipids, known as glycosylation, is one of the most common co-/posttranslational modifications of proteins. Many important biological roles of glycoproteins are modulated by N-linked oligosaccharides. As glucose levels can affect the pathways leading to glycosylation of proteins, we investigated whether metabolic syndrome (MS) and type 2 diabetes mellitus (T2DM), pathological conditions characterized by altered glucose levels, are associated with specific modifications in serum N-glycome. METHODS: We enrolled in the study 562 patients with Type 2 Diabetes Mellitus (T2DM) (mean age 65.6±8.2 years) and 599 healthy control subjects (CTRs) (mean age, 58.5±12.4 years). N-glycome was evaluated in serum glycoproteins. RESULTS: We found significant changes in N-glycan composition in the sera of T2DM patients. In particular, α(1,6)-linked arm monogalactosylated, core-fucosylated diantennary N-glycans (NG1(6)A2F) were significantly reduced in T2DM compared with CTR subjects. Importantly, they were equally reduced in diabetic patients with and without complications (P<0.001) compared with CTRs. Macro vascular-complications were found to be related with decreased levels of NG1(6)A2F. In addition, NG1(6)A2F and NG1(3)A2F, identifying, respectively, monogalactosylated N-glycans with α(1,6)- and α(1,3)-antennary galactosylation, resulted strongly correlated with most MS parameters. The plasmatic levels of these two glycans were lower in T2DM as compared to healthy controls, and even lower in patients with complications and MS, that is the extreme "unhealthy" phenotype (T2DM+ with MS). CONCLUSIONS: Imbalance of glycosyltransferases, glycosidases and sugar nucleotide donor levels is able to cause the structural changes evidenced by our findings. Serum N-glycan profiles are thus sensitive to the presence of diabetes and MS. Serum N-glycan levels could therefore provide a non-invasive alternative marker for T2DM and MS.


Subject(s)
Blood Proteins/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Glycomics , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Polysaccharides/metabolism , Aged , Case-Control Studies , Female , Glycomics/methods , Glycoproteins/blood , Glycoproteins/metabolism , Humans , Male , Middle Aged
9.
Curr Pharm Des ; 19(9): 1675-9, 2013.
Article in English | MEDLINE | ID: mdl-23589904

ABSTRACT

Inflamm-aging, that is the age-associated inflammatory status, is considered one of the most striking consequences of immunosenescence, as it is believed to be linked to the majority of age-associated diseases sharing an inflammatory basis. Nevertheless, evidence is emerging that inflamm-aging is at least in part independent from immunological stimuli. Moreover, centenarians who avoided or delayed major inflammatory diseases display markers of inflammation. In this paper we proposed a reappraisal of the concept of inflamm-aging, suggesting that its pathological effects can be independent from the total amount of pro-inflammatory mediators, but they would be rather associated with the anatomical district and type of cells where they are produced and where they primarily act.


Subject(s)
Aging , Cellular Senescence , Immune System/physiology , Inflammation/physiopathology , Longevity , Apoptosis , DNA/blood , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...