Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Adv ; 6(45)2020 11.
Article in English | MEDLINE | ID: mdl-33158860

ABSTRACT

Arthropod herbivores cause substantial economic costs that drive an increasing need to develop environmentally sustainable approaches to herbivore control. Increasing plant diversity is expected to limit herbivory by altering plant-herbivore and predator-herbivore interactions, but the simultaneous influence of these interactions on herbivore impacts remains unexplored. We compiled 487 arthropod food webs in two long-running grassland biodiversity experiments in Europe and North America to investigate whether and how increasing plant diversity can reduce the impacts of herbivores on plants. We show that plants lose just under half as much energy to arthropod herbivores when in high-diversity mixtures versus monocultures and reveal that plant diversity decreases effects of herbivores on plants by simultaneously benefiting predators and reducing average herbivore food quality. These findings demonstrate that conserving plant diversity is crucial for maintaining interactions in food webs that provide natural control of herbivore pests.


Subject(s)
Arthropods , Herbivory , Animals , Biodiversity , Food Chain , Plants
3.
Nat Commun ; 11(1): 6036, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247130

ABSTRACT

Human activities are transforming grassland biomass via changing climate, elemental nutrients, and herbivory. Theory predicts that food-limited herbivores will consume any additional biomass stimulated by nutrient inputs ('consumer-controlled'). Alternatively, nutrient supply is predicted to increase biomass where herbivores alter community composition or are limited by factors other than food ('resource-controlled'). Using an experiment replicated in 58 grasslands spanning six continents, we show that nutrient addition and vertebrate herbivore exclusion each caused sustained increases in aboveground live biomass over a decade, but consumer control was weak. However, at sites with high vertebrate grazing intensity or domestic livestock, herbivores consumed the additional fertilization-induced biomass, supporting the consumer-controlled prediction. Herbivores most effectively reduced the additional live biomass at sites with low precipitation or high ambient soil nitrogen. Overall, these experimental results suggest that grassland biomass will outstrip wild herbivore control as human activities increase elemental nutrient supply, with widespread consequences for grazing and fire risk.


Subject(s)
Biomass , Grassland , Herbivory/physiology , Nitrogen/analysis , Phosphorus/analysis , Confidence Intervals , Fertilizers , Time Factors
4.
Ecology ; 101(7): e03057, 2020 07.
Article in English | MEDLINE | ID: mdl-32239498

ABSTRACT

The diversity of primary producers strongly affects the structure and diversity of species assemblages at other trophic levels. However, limited knowledge exists of how plant diversity effects at small spatial scales propagate to consumer communities at larger spatial scales. We assessed arthropod community ß and γ-diversity in response to experimentally manipulated plant community richness in two long-term grassland biodiversity experiments (Jena, Germany and Cedar Creek, USA) replicated over two years. We calculated arthropod species turnover among all plot combinations (ß-diversity), and accumulated number of arthropod species occurring on (1) all pairwise plot combinations and (2) 40 randomly selected six-plot combinations (γ-diversity). The components of arthropod diversity were tested against two measures of plant diversity, namely average plant α-diversity ( PSR¯ ) and the average difference in plant α-diversity between plots (ΔPSR). Whereas PSR¯ points to the overall importance of plant α-diversity for arthropod community turnover and diversity on a larger scale, ΔPSR represents the role of habitat heterogeneity. We demonstrate that arthropod γ-diversity is supported by high, homogeneous plant α-diversity, despite lower arthropod ß-diversity among high- compared to low-diversity plant communities. We also show that, in six-plot combinations, average plant α-diversity has a positive influence on arthropod γ-diversity only when homogeneity in plant α-diversity is also high. Varying heterogeneity in six-plot combinations showed that combinations consisting solely of plots with an intermediate level of plant α-diversity support a higher number of arthropod species compared to combinations that contain a mix of high- and low-diversity plots. In fact, equal levels of arthropod diversity were found for six-plot combinations with only intermediate or high plant α-diversity, due to saturating benefits of local and larger-scale plant diversity for higher trophic levels. Our results, alongside those of recent observational studies, strongly suggest that maintaining high α-diversity in plant communities is important for conserving multiple components of arthropod diversity. As arthropods carry out a range of essential ecosystem functions, such as pollination and natural pest-control, our findings provide crucial insight for effective planning of human-dominated landscapes to maximize both ecological and economic benefits in grassland systems.


Subject(s)
Arthropods , Grassland , Animals , Biodiversity , Ecosystem , Germany , Humans
5.
Nat Commun ; 10(1): 4981, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31672992

ABSTRACT

Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential Nmin only weakly correlates with realised Nmin, but contributes to explain realised net Nmin when combined with soil and climatic variables. We provide novel insights of global realised soil net Nmin and show that potential soil net Nmin data available in the literature could be parameterised with soil and climate data to better predict realised Nmin.

6.
Ecol Lett ; 22(7): 1136-1144, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31074933

ABSTRACT

Sodium is unique among abundant elemental nutrients, because most plant species do not require it for growth or development, whereas animals physiologically require sodium. Foliar sodium influences consumption rates by animals and can structure herbivores across landscapes. We quantified foliar sodium in 201 locally abundant, herbaceous species representing 32 families and, at 26 sites on four continents, experimentally manipulated vertebrate herbivores and elemental nutrients to determine their effect on foliar sodium. Foliar sodium varied taxonomically and geographically, spanning five orders of magnitude. Site-level foliar sodium increased most strongly with site aridity and soil sodium; nutrient addition weakened the relationship between aridity and mean foliar sodium. Within sites, high sodium plants declined in abundance with fertilisation, whereas low sodium plants increased. Herbivory provided an explanation: herbivores selectively reduced high nutrient, high sodium plants. Thus, interactions among climate, nutrients and the resulting nutritional value for herbivores determine foliar sodium biogeography in herbaceous-dominated systems.


Subject(s)
Grassland , Herbivory , Sodium , Adaptation, Physiological , Animals , Nitrogen , Plants , Soil
7.
Ecol Lett ; 22(6): 936-945, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30884085

ABSTRACT

Soil stores approximately twice as much carbon as the atmosphere and fluctuations in the size of the soil carbon pool directly influence climate conditions. We used the Nutrient Network global change experiment to examine how anthropogenic nutrient enrichment might influence grassland soil carbon storage at a global scale. In isolation, enrichment of nitrogen and phosphorous had minimal impacts on soil carbon storage. However, when these nutrients were added in combination with potassium and micronutrients, soil carbon stocks changed considerably, with an average increase of 0.04 KgCm-2  year-1 (standard deviation 0.18 KgCm-2  year-1 ). These effects did not correlate with changes in primary productivity, suggesting that soil carbon decomposition may have been restricted. Although nutrient enrichment caused soil carbon gains most dry, sandy regions, considerable absolute losses of soil carbon may occur in high-latitude regions that store the majority of the world's soil carbon. These mechanistic insights into the sensitivity of grassland carbon stocks to nutrient enrichment can facilitate biochemical modelling efforts to project carbon cycling under future climate scenarios.


Subject(s)
Carbon , Soil , Ecosystem , Nitrogen , Nutrients , Soil/chemistry
8.
Bull Math Biol ; 73(11): 2707-30, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21505932

ABSTRACT

Many generalist pathogens are influenced by the spatial distributions and relative abundances of susceptible host species. The spatial structure of host populations can influence patterns of infection incidence (or disease outbreaks), and the effects of a generalist pathogen on host community dynamics in a spatially heterogeneous community may differ from predictions derived via simple models. In this paper, we model the transmission of a generalist pathogen within a patch framework that incorporates the movement of vectors between discrete host patches to investigate the effects of local host community composition and vector movement rates on disease dynamics.We use barley and cereal yellow dwarf viruses (B/CYDV), a suite of generalist, aphid-vectored pathogens of grasses, and their interactions with a range of host species as our case study. We examine whether B/CYDV can persist locally or in a patch framework across a range of host community configurations. We then determine how pathogen-mediated interactions between perennial and annual competitors are altered at the local and regional scale when the host populations are spatially structured. We find that the spatial configuration of the patch system, host composition within patches, and patch connectivity affect not only the ability of the pathogen to invade a fragmented system, but also determine whether the pathogen facilitates the invasion of a non-native host species. Further, our results suggest that connectivity can interact with arrival time and host infection tolerance to determine the success or failure of establishment for newly arriving species.


Subject(s)
Luteovirus/pathogenicity , Plant Diseases/virology , Poaceae/virology , Animals , Aphids/virology , Host-Pathogen Interactions , Insect Vectors/virology , Mathematical Concepts , Models, Biological , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...