Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 7(1): 430, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33293578

ABSTRACT

This data article presents a compilation of mechanical properties of 630 multi-principal element alloys (MPEAs). Built upon recently published MPEA databases, this article includes updated records from previous reviews (with minor error corrections) along with new data from articles that were published since 2019. The extracted properties include reported composition, processing method, microstructure, density, hardness, yield strength, ultimate tensile strength (or maximum compression strength), elongation (or maximum compression strain), and Young's modulus. Additionally, descriptors (e.g. grain size) not included in previous reviews were also extracted for articles that reported them. The database is hosted and continually updated on an open data platform, Citrination. To promote interpretation, some data are graphically presented.

2.
Dalton Trans ; 43(39): 14612-24, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25140897

ABSTRACT

We have prepared Ba6Fe25S27, and studied its magnetic properties and electronic structure. Single crystal diffraction revealed a cubic phase (Pm3[combining macron]m) with a = 10.2057(9) Å and Z = 1. Within the large cubic cell, tetrahedrally coordinated Fe atoms arrange into octonuclear Fe8(µ4-S)6(S8) clusters, which can be described as a cube of Fe atoms with six face-capping and eight terminal S atoms. SQUID magnetometry measurements reveal an antiferromagnetic transition at 25 K and anomalous high-temperature dependence of magnetic susceptibility that is non-Curie like-two magnetic signatures which mimic behavior seen in the parent phases of Fe-based superconductors. Using a combined DFT and molecular orbital based approach, we provide an interpretation of the bonding and stability within Ba6M25S27 (M = Fe, Co, Ni) and related M9S8 phases. Through a σ-bonding molecular orbital model of the transition metal coordination environments, we illustrate how the local stability can be enhanced through addition of Ba. In addition, we perform spin-polarized DFT calculations on Ba6Fe25S27 to determine the effect of adopting an antiferromagnetic spin state on its electronic structure. By studying the magnetic properties from an empirical and computational perspective, we hope to elucidate what aspects of the magnetic structure are significant to bonding.


Subject(s)
Barium/chemistry , Coordination Complexes/chemistry , Iron/chemistry , Magnetics , Quantum Theory , Sulfur/chemistry , Crystallography, X-Ray , Models, Molecular
3.
Faraday Discuss ; 176: 333-47, 2014.
Article in English | MEDLINE | ID: mdl-25592992

ABSTRACT

In developing phosphors for application in solid state lighting, it is advantageous to target structures from databases with highly condensed polyhedral networks that produce rigid host compounds. Rigidity limits channels for non-radiative decay that will decrease the luminescence quantum yield. BaM(2)Si(3)O(10) (M = Sc, Lu) follows this design criterion and is studied here as an efficient Eu(2+)-based phosphor. M = Sc(3+) and Lu(3+) compounds with Eu(2+) substitution were prepared and characterized using synchrotron X-ray powder diffraction and photoluminescence spectroscopy. Substitution with Eu(2+) according to Ba(1-x)Eu(x)Sc(2)Si(3)O(10) and Ba(1-x)Eu(x)Lu(2)Si(3)O(10) results in UV-to-blue and UV-to-blue-green phosphors, respectively. Interestingly, substitution with Eu(2+) in the Lu(3+) containing material produces two emission peaks at low temperature and with 365 nm excitation, as allowed by the two substitution sites. The photoluminescence of the Sc(3+) compound is robust at high temperature, decreasing by only 25% of its room temperature intensity at 503 K, while the Lu-analogue suffers a large drop (75%) from its room temperature intensity. The decrease in emission intensity is explained as stemming from charge transfer quenching due to the short distances separating the luminescent centers on the Lu(3+) substitution site. The correlation between structure and optical response in these two compounds indicates that even though the structures are three-dimensionally connected, high symmetry is required to prevent structural distortions that could impact photoluminescence.

4.
Inorg Chem ; 52(14): 8010-6, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23822144

ABSTRACT

A novel cerium-substituted, barium yttrium silicate has been identified as an efficient blue-green phosphor for application in solid state lighting. Ba9Y2Si6O24:Ce(3+) was prepared and structurally characterized using synchrotron X-ray powder diffraction. The photoluminescent characterization identified a major peak at 394 nm in the excitation spectrum, making this material viable for near-UV LED excitation. An efficient emission, with a quantum yield of ≈60%, covers a broad portion (430-675 nm) of the visible spectrum, leading to the blue-green color. Concentration quenching occurs when the Ce(3+) content exceeds ≈3 mol %, whereas high temperature photoluminescent measurements show a 25% drop from the room temperature efficiency at 500 K. The emission of this compound can be red-shifted via the solid solution Ba9(Y(1-y)Sc(y))(1.94)Ce(0.06)Si6O24 (y = 0.1, 0.2), allowing for tunable color properties when device integration is considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...