Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 177: 117026, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936197

ABSTRACT

Cyclophosphamide is an anti-neoplastic drug that has shown competence in the management of a broad range of malignant tumors. In addition, it represents a keystone agent for management of immunological conditions. Despite these unique properties, induction of lung toxicity may limit its clinical use. Omarigliptin is one of the dipeptidyl peptidase-4 inhibitors that has proven efficacy in management of diabetes mellitus. Rosinidin is an anthocyanidin flavonoid that exhibited promising results in management of diseases characterized by oxidative stress, inflammation, and apoptosis. The present work investigated the possible effects of omarigliptin with or without rosinidin on cyclophosphamide-induced lung toxicity with an exploration of the molecular mechanisms that contribute to these effects. In a rodent model of cyclophosphamide elicited lung toxicity, the potential efficacy of omarigliptin with or without rosinidin was investigated at both the biochemical and the histopathological levels. Both omarigliptin and rosinidin exhibited a synergistic ability to augment the tissue antioxidant defenses, mitigate the inflammatory pathways, restore glucagon-like peptide-1 levels, modulate high mobility group box 1 (HMGB1)/receptors of advanced glycation end products (RAGE)/nuclear factor kappa B (NF-κB) axis, downregulate the fibrogenic mediators, and create a balance between the pathways involved in apoptosis and the autophagy signals in the pulmonary tissues. In conclusion, omarigliptin/rosinidin combination may be introduced as a novel therapeutic modality that attenuates the different forms of lung toxicities induced by cyclophosphamide.

2.
Life Sci ; 313: 121288, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36528079

ABSTRACT

BACKGROUND AND AIMS: Bleomycin (BLM) is one of the antitumor medications that had proven efficacy in the treatment of a wide range of malignant conditions. Pulmonary fibrosis which is frequently encountered during the course of bleomycin therapy may significantly reduce the potential efficacy of bleomycin in cancer therapy. This study tested the hypothesis that itraconazole may have mitigating effects on BLM-induced pulmonary fibrosis and tried to delineate the potential mechanisms of these effects. MATERIALS AND METHODS: In a rat model of pulmonary fibrosis elicited by BLM, the effect of different doses of itraconazole was explored at the biochemical, histopathological, and electron microscopic levels. KEY FINDINGS: Itraconazole, in a dose-dependent manner, exhibited significant effects on the pro-oxidant/antioxidant balance, the inflammatory consequences, high-mobility group box 1/toll-like receptor-4 Axis, autophagy and nuclear factor kappa B/Nod-like receptor protein 3 inflammasome signaling and alleviated the histopathological, immunohistochemical, and electron microscopic perturbations induced by BLM in the pulmonary tissues. SIGNIFICANCE: In view of the afore-mentioned data, itraconazole may be a promising drug that efficiently mitigates the deleterious effects of BLM on the pulmonary tissues.


Subject(s)
HMGB1 Protein , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , NF-kappa B/metabolism , Bleomycin/pharmacology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Itraconazole/pharmacology , Toll-Like Receptor 4/metabolism , HMGB1 Protein/metabolism , Lung/metabolism , Autophagy
3.
Pharmaceuticals (Basel) ; 15(5)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631426

ABSTRACT

Colitis is one of the inflammatory states that affect the intestinal wall and may even predispose to malignancy due to chronic irritation. Although the etiology of colitis is not yet fully explored, a combination of genetic and environmental factors is strongly incriminated. Perindopril is an angiotensin-converting enzyme inhibitor that is used for the management of a wide range of cardiovascular diseases. Ambrosin is a sesquiterpene lactone that was proven to have beneficial effects in disorders characterized by inflammatory nature. The objective of this study is to make a comparison between the effects of perindopril or ambrosin on dextran sulfate sodium (DSS)-induced colitis in mice and to explore the effect of their combination. The present findings indicate that each ambrosin or perindopril alone or in combination is able to ameliorate oxidative stress and suppress the proinflammatory pathways in the colonic tissues of DSS-treated mice via mechanisms related to toll-like receptor 4/nuclear factor kappa B signaling and modulation of peroxisome proliferator-activated receptor gamma/sirtuin-1 levels. In addition, each ambrosin or perindopril alone or in combination inhibits apoptosis and augments the mediators of autophagy in DSS-treated mice. These effects are reflected in the amelioration of the histopathological and electron microscopic changes in the colonic tissues. Interestingly, the most remarkable effects are those encountered with the perindopril/ambrosin combination compared to the groups treated with each of these agents alone. In conclusion, the perindopril/ambrosin combination might represent an effective modality for mitigation of the pathogenic events and the clinical sequelae of colitis.

4.
Hum Exp Toxicol ; 41: 9603271221089919, 2022.
Article in English | MEDLINE | ID: mdl-35465754

ABSTRACT

Bisphenol-A (BPA) is a chemical substance that is widely used in industry for manufacturing of plastic bottles and resins. Recent reports found that BPA may mimic the effects of estrogen to a great manner that might disrupt the normal hormonal balance in the human body. Fluvastatin is an agent used for treatment of hypercholesterolemia that was proven to possess promising antioxidant ant anti-inflammatory properties. Taxifolin is a polyphenolic compound with potential antioxidant and antiestrogenic effects. The present study investigated the prospect of fluvastatin with or without taxifolin to mitigate testicular dysfunction elicited by BPA in rats. In a model of BPA-induced testicular toxicity, the hormonal profile was assessed and the testicular tissues were examined by biochemical analysis, histopathology, and immunohistochemistry. Fluvastatin with or without taxifolin improved the body weight gain, hormonal profile, testicular weight and functions, sperm characteristics, the antioxidant status, and the anti-inflammatory mechanisms together with enhancement of autophagy and suppression of the proapoptotic events induced by BPA in the testicular tissues. In addition, fluvastatin with or without taxifolin significantly mitigated the histopathological and the immunohistochemical changes induced by BPA in the testicular tissues. These desirable effects were more pronounced with fluvastatin/taxifolin combination relative to the use of each of these agents alone. In tandem, fluvastatin/taxifolin combination might counteract the pathogenic events induced by BPA in the testicular tissues which may be considered as a novel strategy for amelioration of these disorders.


Subject(s)
Antioxidants , Proto-Oncogene Proteins c-akt , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis , Benzhydryl Compounds/toxicity , Fluvastatin , Inflammasomes , Male , Mitogen-Activated Protein Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Proto-Oncogene Proteins c-akt/metabolism , Quercetin/analogs & derivatives , Rats , TOR Serine-Threonine Kinases/metabolism , Testis
6.
Tissue Cell ; 47(5): 498-505, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26276089

ABSTRACT

Adriamycin is a cytotoxic anthracycline antibiotic used in treatment of many types of cancer. Metformin is antidiabetic drug and is under investigation for treatment of cancer. The aim of this work was to study the effect of each of adriamycin and metformin alone and in combination on solid Ehrlich carcinoma (SEC) in mice. Eighty BALB/C mice were divided into four equal groups: SEC group, SEC+adriamycin, SEC+metformin, SEC+adriamycin+metformin. Tumor volume, survival rate, tissue catalase, tissue reduced glutathione, tissue malondialdehyde, tissue sphingosine kinase 1 activity, tissue caspase 3 activity and tissue tumor necrosis factor alpha were determined. A part of the tumor was examined for histopathological and immunohistochemical study. Adriamycin or metformin alone or in combination induced significant increase in the survival rate, tissue catalase, reduced glutathione and tissue caspase 3 activity with significant decrease in tumor volume, tissue malondialdehyde, tissue sphingosine kinase 1 activity and tumor necrosis factor alpha and alleviated the histopathological changes with significant increase in Trp53 expression and apoptotic index compared to SEC group. In conclusion, the combination of adriamycin and metformin had a better effect than each of these drugs alone against transplantable tumor model in mice.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Apoptosis/drug effects , Doxorubicin/pharmacology , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Neoplasms/drug therapy , Animals , Disease Models, Animal , Malondialdehyde/metabolism , Mice, Inbred BALB C , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...