Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(17): 177801, 2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34739279

ABSTRACT

We present structural relaxation studies of a polystyrene star polymer after cessation of high-rate extensional flow. During the steady-state flow, the scattering pattern shows two sets of independent correlations peaks, reflecting the structure of a polymer confined in a fully oriented three-armed tube. Upon cessation of flow, the relaxation constitutes three distinct regimes. In a first regime, the perpendicular correlation peaks disappear, signifying disruption of the virtual tube. In a second regime, broad scattering arcs emerge, reflecting relaxation from highly aligned chains to more relaxed, still anisotropic form. New entanglements dominate the last relaxation regime where the scattering pattern evolves to a successively elliptical and circular pattern, reflecting relaxation via reptation.

2.
ACS Macro Lett ; 9(10): 1452-1457, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-35653662

ABSTRACT

Adding small amounts of ring polymers to a matrix of their linear counterparts is known to increase the zero-shear-rate viscosity because of linear-ring threading. Uniaxial extensional rheology measurements show that, unlike its pure linear and ring constituents, the blend exhibits an overshoot in the stress growth coefficient. By combining these measurements with ex-situ small-angle neutron scattering and nonequilibrium molecular dynamics simulations, this overshoot is shown to be driven by a transient threading-unthreading transition of rings embedded within the linear entanglement network. Prior to unthreading, embedded rings deform affinely with the linear entanglement network and produce a measurably stronger elongation of the linear chains in the blend compared to the pure linear melt. Thus, rings uniquely alter the mechanisms of transient elongation in linear polymers.

3.
Phys Rev Lett ; 120(20): 207801, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864321

ABSTRACT

We present structural small-angle neutron scattering studies of a three-armed polystyrene star polymer with short deuterated segments at the end of each arm. We show that the form factor of the three-armed star molecules in the relaxed state agrees with that of the random phase approximation of Gaussian chains. Upon exposure to large extensional flow conditions, the star polymers change conformation resulting in a highly stretched structure that mimics a fully extended three-armed tube model. All three arms are parallel to the flow, one arm being either in positive or negative stretching direction, while the two other arms are oriented parallel, right next to each other in the direction opposite to the first arm.

4.
ACS Macro Lett ; 7(9): 1126-1130, 2018 Sep 18.
Article in English | MEDLINE | ID: mdl-35632943

ABSTRACT

We show that stretching polystyrene melts at a rate faster than the inverse Rouse time, followed by rapid quenching below the glass transition temperature, results in a material that is flexible and remains so for at least six months. Oriented micro/nanofibers are observed in the flexible samples after the mechanical tests. The fibers are probably related to the highly aligned molecules in melt stretching. At room temperature, a tensile strength over 300 MPa has been achieved for the flexible polystyrenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...