Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Neurosci ; 22(7): 1046-1052, 2019 07.
Article in English | MEDLINE | ID: mdl-31182869

ABSTRACT

Failed regeneration of CNS myelin contributes to clinical decline in neuroinflammatory and neurodegenerative diseases, for which there is an unmet therapeutic need. Here we reveal that efficient remyelination requires death of proinflammatory microglia followed by repopulation to a pro-regenerative state. We propose that impaired microglia death and/or repopulation may underpin dysregulated microglia activation in neurological diseases, and we reveal therapeutic targets to promote white matter regeneration.


Subject(s)
Demyelinating Diseases/physiopathology , Microglia/physiology , Nerve Regeneration/physiology , Animals , Corpus Callosum/drug effects , Corpus Callosum/pathology , Demyelinating Diseases/chemically induced , Female , Gene Expression Profiling , Humans , Inflammation , Lysophosphatidylcholines/toxicity , Male , Mice , Mice, Inbred C57BL , Microglia/classification , Multiple Sclerosis/pathology , Necrosis , Nestin/analysis , Phagocytosis , Rats , Rats, Sprague-Dawley , Sequence Analysis, RNA , White Matter/physiology
2.
Pharmacol Res ; 104: 97-107, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26687096

ABSTRACT

This study describes a fundamental functional difference between the two main polymorphisms of the pro-form of brain-derived neurotrophic factor (proBDNF), providing an explanation as to why these forms have such different age-related neurological outcomes. Healthy young carriers of the Met66 form (present in ∼30% Caucasians) have reduced hippocampal volume and impaired hippocampal-dependent memory function, yet the same polymorphic population shows enhanced cognitive recovery after traumatic brain injury, delayed cognitive dysfunction during aging, and lower risk of late-onset Alzheimer's disease (AD) compared to those with the more common Val66 polymorphism. To examine the differences between the protein polymorphisms in structure, kinetics of binding to proBDNF receptors and in vitro function, we generated purified cleavage-resistant human variants. Intriguingly, we found no statistical differences in those characteristics. As anticipated, exogenous application of proBDNF Val66 to rat hippocampal slices dysregulated synaptic plasticity, inhibiting long-term potentiation (LTP) and facilitating long-term depression (LTD). We subsequently observed that this occurred via the glycogen synthase kinase 3ß (GSK3ß) activation pathway. However, surprisingly, we found that Met66 had no such effects on either LTP or LTD. These novel findings suggest that, unlike Val66, the Met66 variant does not facilitate synapse weakening signaling, perhaps accounting for its protective effects with aging.


Subject(s)
Brain-Derived Neurotrophic Factor/genetics , Protein Precursors/genetics , Synapses/physiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cells, Cultured , Glycogen Synthase Kinase 3 beta/metabolism , Hippocampus/drug effects , Hippocampus/physiology , Humans , L-Lactate Dehydrogenase/metabolism , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Polymorphism, Genetic , Protein Precursors/metabolism , Rats, Wistar , Recombinant Proteins/pharmacology , Synapses/drug effects , tau Proteins/metabolism
3.
J Neuropathol Exp Neurol ; 73(12): 1166-82, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25383639

ABSTRACT

EFhd2 is a calcium-binding adaptor protein that has been found to be associated with pathologically aggregated tau in the brain in Alzheimer disease and in a mouse model of frontotemporal dementia. EFhd2 has cell type-specific functions, including the modulation of intracellular calcium responses, actin dynamics, and microtubule transport. Here we report that EFhd2 protein and mRNA levels are reduced in human frontal cortex tissue affected by different types of dementia with and without tau pathology. We show that EFhd2 is mainly a neuronal protein in the brain and is abundant in the forebrain. Using short hairpin RNA-mediated knockdown of EFhd2 expression in cultured cortical neurons, we demonstrate that loss of EFhd2 affects the number of synapses developed in vitro whereas it does not alter neurite outgrowth per se. Our data suggest that EFhd2 is involved in the control of synapse development and maintenance through means other than affecting neurite development. The changes in expression levels observed in human dementias might, therefore, play a significant role in disease onset and progression of dementia, which is characterized by the loss of synapses.


Subject(s)
Calcium-Binding Proteins/physiology , Dementia/metabolism , Dementia/pathology , Synapses/metabolism , Synapses/pathology , Animals , Cells, Cultured , Humans , Mice
4.
PLoS One ; 9(8): e103976, 2014.
Article in English | MEDLINE | ID: mdl-25133820

ABSTRACT

Swiprosin-1/EFhd2 (EFhd2) is a cytoskeletal Ca2+ sensor protein strongly expressed in the brain. It has been shown to interact with mutant tau, which can promote neurodegeneration, but nothing is known about the physiological function of EFhd2 in the nervous system. To elucidate this question, we analyzed EFhd2-/-/lacZ reporter mice and showed that lacZ was strongly expressed in the cortex, the dentate gyrus, the CA1 and CA2 regions of the hippocampus, the thalamus, and the olfactory bulb. Immunohistochemistry and western blotting confirmed this pattern and revealed expression of EFhd2 during neuronal maturation. In cortical neurons, EFhd2 was detected in neurites marked by MAP2 and co-localized with pre- and post-synaptic markers. Approximately one third of EFhd2 associated with a biochemically isolated synaptosome preparation. There, EFhd2 was mostly confined to the cytosolic and plasma membrane fractions. Both synaptic endocytosis and exocytosis in primary hippocampal EFhd2-/- neurons were unaltered but transport of synaptophysin-GFP containing vesicles was enhanced in EFhd2-/- primary hippocampal neurons, and notably, EFhd2 inhibited kinesin mediated microtubule gliding. Therefore, we found that EFhd2 is a neuronal protein that interferes with kinesin-mediated transport.


Subject(s)
Calcium-Binding Proteins/metabolism , Kinesins/metabolism , Neurites/metabolism , Animals , Axonal Transport , Cells, Cultured , Hippocampus/cytology , Mice, Inbred C57BL , Mice, Knockout , Protein Transport , Synaptosomes/metabolism
5.
Eur J Cancer ; 50(5): 1025-34, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24462375

ABSTRACT

PURPOSE: Exosomes are small 50-100nm sized extracellular vesicles released from normal and tumour cells and are a source of a new intercellular communication pathway. Tumour exosomes promote tumour growth and progression. What regulates the release and homoeostatic levels of exosomes, in cancer, in body fluids remains undefined. METHODS: We utilised a human mammary epithelial cell line (HMEC B42) and a breast cancer cell line derived from it (B42 clone 16) to investigate exosome production and regulation. Exosome numbers were quantified using a Nanosight LM10 and measured in culture supernatants in the absence and presence of exosomes in the medium. Concentrated suspensions of exosomes from the normal mammary epithelial cells, the breast cancer cells and bladder cancer cells were used. The interaction of exosomes with tumour cells was also investigated using fluorescently labelled exosomes. RESULTS: Exosome release from normal human mammary epithelial cells and breast cancer cells is regulated by the presence of exosomes, derived from their own cells, in the extracellular environment of the cells. Exosomes from normal mammary epithelial cells also inhibit exosome secretion by breast cancer cells, which occurs in a tissue specific manner. Labelled exosomes from mammary epithelial cells are internalised into the tumour cells implicating a dynamic equilibrium and suggesting a mechanism for feedback control. CONCLUSIONS: These data suggest a previously unknown novel feedback regulatory mechanism for controlling exosome release, which may highlight a new therapeutic approach to controlling the deleterious effects of tumour exosomes. This regulatory mechanism is likely to be generic to other tumours.


Subject(s)
Epithelial Cells/metabolism , Exosomes/metabolism , Mammary Glands, Human/cytology , Signal Transduction , Blotting, Western , Breast Neoplasms/chemistry , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cells, Cultured , Epithelial Cells/chemistry , Exosomes/chemistry , Extracellular Space/chemistry , Extracellular Space/metabolism , Female , Fluorescent Dyes/chemistry , Humans , Microscopy, Confocal , Organic Chemicals/chemistry , Time Factors
6.
Acta Biomater ; 10(5): 2043-55, 2014 May.
Article in English | MEDLINE | ID: mdl-24406196

ABSTRACT

Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance.


Subject(s)
Microscopy, Atomic Force/methods , Spectrum Analysis, Raman/methods , Urinary Bladder Neoplasms/pathology , Urothelium/pathology , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Adhesion , Cell Line, Tumor , Cell Membrane/pathology , Elastic Modulus , Humans , Nanostructures/ultrastructure , Phalloidine/metabolism , Principal Component Analysis , Sensitivity and Specificity
7.
Curr Alzheimer Res ; 10(1): 21-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22742981

ABSTRACT

Current strategies for the treatment of Alzheimer's disease (AD) involve tackling the formation or clearance of the amyloid-beta peptide (Aß) and/or hyper-phosphorylated tau, or the support and stabilization of the remaining neuronal networks. However, as we gain a clearer idea of the large number of molecular mechanisms at work in this disease, it is becoming clearer that the treatment of AD should take a combined approach of dealing with several aspects of the pathology. The concept that we also need to protect specific sensitive targets within the cell should also be considered. In particular the role of protecting the function of a specific mitochondrial protein, amyloid binding alcohol dehydrogenase (ABAD), will be the focus of this review. Mitochondrial dysfunction is a well-recognized fact in the progression of AD, though until recently the mechanisms involved could only be loosely labeled as changes in 'metabolism'. The discovery that Aß can be present within the mitochondria and specifically bind to ABAD, has opened up a new area of AD research. Here we review the evidence that the prevention of Aß binding to ABAD is a drug target for the treatment of AD.


Subject(s)
3-Hydroxyacyl CoA Dehydrogenases/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Humans , Models, Biological
8.
Biochem Soc Trans ; 39(4): 868-73, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21787315

ABSTRACT

It is well established that the intracellular accumulation of Aß (amyloid ß-peptide) is associated with AD (Alzheimer's disease) and that this accumulation is toxic to neurons. The precise mechanism by which this toxicity occurs is not well understood; however, identifying the causes of this toxicity is an essential step towards developing treatments for AD. One intracellular location where the accumulation of Aß can have a major effect is within mitochondria, where mitochondrial proteins have been identified that act as binding sites for Aß, and when binding occurs, a toxic response results. At one of these identified sites, an enzyme known as ABAD (amyloid-binding alcohol dehydrogenase), we have identified changes in gene expression in the brain cortex, following Aß accumulation within mitochondria. Specifically, we have identified two proteins that are up-regulated not only in the brains of transgenic animal models of AD but also in those of human sufferers. The increased expression of these proteins demonstrates the complex and counteracting pathways that are activated in AD. Previous studies have identified approximate contact sites between ABAD and Aß; on basis of these observations, we have shown that by using a modified peptide approach it is possible to reverse the expression of these two proteins in living transgenic animals and also to recover mitochondrial and behavioural deficits. This indicates that the ABAD-Aß interaction is potentially an interesting target for therapeutic intervention. To explore this further we used a fluorescing substrate mimic to measure the activity of ABAD within living cells, and in addition we have identified chemical fragments that bind to ABAD, using a thermal shift assay.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Mitochondria/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Alzheimer Disease/drug therapy , Animals , Drug Evaluation, Preclinical/methods , Humans , Models, Biological , Peptidylprolyl Isomerase/metabolism
9.
Biochem J ; 426(3): 255-70, 2010 Feb 24.
Article in English | MEDLINE | ID: mdl-20175748

ABSTRACT

The Abeta (amyloid-beta peptide) has long been associated with Alzheimer's disease, originally in the form of extracellular plaques. However, in the present paper we review the growing evidence for the role of soluble intracellular Abeta in the disease progression, with particular reference to Abeta found within the mitochondria. Once inside the cell, Abeta is able to interact with a number of targets, including the mitochondrial proteins ABAD (amyloid-binding alcohol dehydrogenase) and CypD (cyclophilin D), which is a component of the mitochondrial permeability transition pore. Interference with the normal functions of these proteins results in disruption of cell homoeostasis and ultimately cell death. The present review explores the possible mechanisms by which cell death occurs, considering the evidence presented on a molecular, cellular and in vivo level.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Mitochondrial Proteins/metabolism , 3-Hydroxyacyl CoA Dehydrogenases/metabolism , Alzheimer Disease/pathology , Apoptosis , Peptidyl-Prolyl Isomerase F , Cyclophilins/metabolism , Humans , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Models, Biological , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...