Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 26(10): 1155-60, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18846089

ABSTRACT

Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and content, and use different terminologies to describe the same chemical entities. This makes comparisons between them difficult and underscores the desirability of a consolidated metabolic network that collects and formalizes the 'community knowledge' of yeast metabolism. We describe how we have produced a consensus metabolic network reconstruction for S. cerevisiae. In drafting it, we placed special emphasis on referencing molecules to persistent databases or using database-independent forms, such as SMILES or InChI strings, as this permits their chemical structure to be represented unambiguously and in a manner that permits automated reasoning. The reconstruction is readily available via a publicly accessible database and in the Systems Biology Markup Language (http://www.comp-sys-bio.org/yeastnet). It can be maintained as a resource that serves as a common denominator for studying the systems biology of yeast. Similar strategies should benefit communities studying genome-scale metabolic networks of other organisms.


Subject(s)
Databases, Protein , Models, Biological , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Systems Biology/methods , Computer Simulation , Information Storage and Retrieval/methods , Systems Integration
2.
In Silico Biol ; 7(2 Suppl): S73-9, 2007.
Article in English | MEDLINE | ID: mdl-17822393

ABSTRACT

We describe a workflow to translate a given metabolic network into a kinetic model; the model summarises kinetic information collected from different data sources. All reactions are modelled by convenience kinetics; where detailed kinetic laws are known, they can also be incorporated. Confidence intervals and correlations of the resulting model parameters are obtained from Bayesian parameter estimation; they can be used to sample parameter sets for Monte-Carlo simulations. The integration method ensures that the resulting parameter distributions are thermodynamically feasible. Here we summarise different previous works on this topic: we give an overview over the convenience kinetics, thermodynamic criteria for parameter sets, Bayesian parameter estimation, the collection of kinetic data, and different machine learning techniques that can be used to obtain prior distributions for kinetic parameters. All methods have been assembled into a workflow that facilitates the integration of biochemical data and the modelling of metabolic networks from scratch.


Subject(s)
Artificial Intelligence , Computer Simulation , Enzymes/chemistry , Models, Biological , Data Collection , Kinetics
3.
Genome Inform ; 18: 215-24, 2007.
Article in English | MEDLINE | ID: mdl-18546489

ABSTRACT

We demonstrate an approach to automatically generating kinetic models of metabolic networks. In a first step, the metabolic network is characterised by its stoichiometric structure. Then to each reaction a kinetic equation is associated describing the metabolic flux. For the kinetics we use a formula that is universally applicable to reactions with arbitrary numbers of substrates and products. Last, the kinetics of the reactions are assigned parameters. The resulting model in SBML format can be fed into standard simulation tools. The approach is applied to the sulphur-glutathione-pathway in Saccharomyces cerevisiae.


Subject(s)
Automation , Models, Theoretical , Bayes Theorem , Glutathione/chemistry , Kinetics , Sulfur/chemistry , Systems Biology
4.
Genome Inform ; 17(1): 80-7, 2006.
Article in English | MEDLINE | ID: mdl-17503358

ABSTRACT

Values of enzyme kinetic parameters are a key requisite for the kinetic modelling of biochemical systems. For most kinetic parameters, however, not even an order of magnitude is known, so the estimation of model parameters from experimental data remains a major task in systems biology. We propose a statistical approach to infer values for kinetic parameters across species and enzymes making use of parameter values that have been measured under various conditions and that are nowadays stored in databases. We fit the data by a statistical regression model in which the substrate, the combination enzyme-substrate and the combination organism-substrate have a linear effect on the logarithmic parameter value. As a result, we obtain predictions and error ranges for unknown enzyme parameters. We apply our method to decadic logarithmic Michaelis-Menten constants from the BRENDA database and confirm the results with leave-one-out crossvalidation, in which we mask one value at a time and predict it from the remaining data. For a set of 8 metabolites we obtain a standard prediction error of 1.01 for the deviation of the predicted values from the true values, while the standard deviation of the experimental values is 1.16. The method is applicable to other types of kinetic parameters for which many experimental data are available.


Subject(s)
Databases, Protein , Enzymes/chemistry , Enzymes/metabolism , Learning , Models, Biological , Models, Statistical , Enzymes/physiology , Kinetics , Predictive Value of Tests , Regression Analysis , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...