Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Braz J Microbiol ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874742

ABSTRACT

Omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), offer numerous health benefits. Enriching these fatty acids in fish oil using cost-effective methods, like lipase application, has been studied extensively. This research aimed to investigate F. solani as a potential lipase producer and compare its efficacy in enhancing polyunsaturated omega-3 fatty acids with commercial lipases. Submerged fermentation with coconut oil yielded Lipase F2, showing remarkable activity (215.68 U/mL). Lipase F2 remained stable at pH 8.0 (activity: 93.84 U/mL) and active between 35 and 70 °C, with optimal stability at 35 °C. It exhibited resistance to various surfactants and ions, showing no cytotoxic activity in vitro, crucial for its application in the food and pharmaceutical industries. Lipase F2 efficiently enriched EPA and DHA in fish oil, reaching 22.1 mol% DHA and 23.8 mol% EPA. These results underscore the economic viability and efficacy of Lipase F2, a partially purified enzyme obtained using low-cost techniques, demonstrating remarkable stability and resistance to diverse conditions. Its performance was comparable to highly pure commercially available enzymes in omega-3 production. These findings highlight the potential of F. solani as a promising lipase source, offering opportunities for economically producing omega-3 and advancing biotechnological applications in the food and supplements industry.

2.
Curr Issues Mol Biol ; 46(5): 3763-3793, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38785503

ABSTRACT

This study explores a nanoemulsion formulated with açaí seed oil, known for its rich fatty acid composition and diverse biological activities. This study aimed to characterise a nanoemulsion formulated with açaí seed oil and explore its cytotoxic effects on HeLa and SiHa cervical cancer cell lines, alongside assessing its antioxidant and toxicity properties both in vitro and in vivo. Extracted from fruits sourced in Brazil, the oil underwent thorough chemical characterization using gas chromatography-mass spectrometry. The resulting nanoemulsion was prepared and evaluated for stability, particle size, and antioxidant properties. The nanoemulsion exhibited translucency, fluidity, and stability post centrifugation and temperature tests, with a droplet size of 238.37, PDI -9.59, pH 7, and turbidity 0.267. In vitro assessments on cervical cancer cell lines revealed antitumour effects, including inhibition of cell proliferation, migration, and colony formation. Toxicity tests conducted in cell cultures and female Swiss mice demonstrated no adverse effects of both açaí seed oil and nanoemulsion. Overall, açaí seed oil, particularly when formulated into a nanoemulsion, presents potential for cancer treatment due to its bioactive properties and safety profile.

3.
Metabolites ; 13(7)2023 Jun 25.
Article in English | MEDLINE | ID: mdl-37512496

ABSTRACT

Açaí, Euterpe oleracea Mart., is a native plant from the Amazonian and is rich in several phytochemicals with anti-tumor activities. The aim was to analyze the effects of açaí seed oil on colorectal adenocarcinoma (ADC) cells. In vitro analyses were performed on CACO-2, HCT-116, and HT-29 cell lines. The strains were treated with açaí seed oil for 24, 48, and 72 h, and cell viability, death, and morphology were analyzed. Molecular docking was performed to evaluate the interaction between the major compounds in açaí seed oil and Annexin A2. The viability assay showed the cytotoxic effect of the oil in colorectal adenocarcinoma cells. Acai seed oil induced increased apoptosis in CACO-2 and HCT-116 cells and interfered with the cell cycle. Western blotting showed an increased expression of LC3-B, suggestive of autophagy, and Annexin A2, an apoptosis regulatory protein. Molecular docking confirmed the interaction of major fatty acids with Annexin A2, suggesting a role of açaí seed oil in modulating Annexin A2 expression in these cancer cell lines. Our results suggest the anti-tumor potential of açaí seed oil in colorectal adenocarcinoma cells and contribute to the development of an active drug from a known natural product.

4.
Braz J Microbiol ; 54(1): 29-36, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36746872

ABSTRACT

PROBLEM OF RESEARCH: Candida spp. biofilms are complex microbial communities that have been associated with increasing resistance to clinically available antifungal drugs. Hence, novel pharmacological approaches with ability to inhibit biofilm formation have been investigated. AIM OF STUDY: The aim was to analyze in vitro antifungal activity of Euterpe oleracea Mart. (açaí berry) extract on biofilm strains of Candida albicans, C. parapsilosis, and C. tropicalis that were formed on abiotic surfaces. REMARKABLE METHODOLOGY: Biofilms of C. albicans, C. parapsilosis, and C. tropicalis were grown in vitro. They were then treated with E. oleracea Mart. extract at different concentrations (7.8, 15.6, 31.2, 62.5, 125, 250, 500, and 1000 µg/mL) for evaluation of both biofilm removal and anti-biofilm activity. REMARKABLE RESULTS: All Candida species analyzed formed biofilms on abiotic surfaces. Yet, increased biofilm formation was displayed for C. tropicalis in comparison with the other two species. E. oleracea Mart. extract was shown to inhibit biofilm formation at all concentrations used when compared to no treatment (p < 0.05). SIGNIFICANCE OF THE STUDY: In the current study, the extract of E. oleracea Mart. demonstrated antifungal activity against Candida albicans, C. parapsilosis, and C. tropicalis biofilms, regardless of the dose utilized. These results are important to evaluate a natural product as antifungal for Candida species.


Subject(s)
Candida , Euterpe , Antifungal Agents/pharmacology , Candida albicans , Biofilms , Candida parapsilosis , Microbial Sensitivity Tests , Plant Extracts/pharmacology , Candida tropicalis
5.
Ultrastruct Pathol ; 46(6): 511-518, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36335591

ABSTRACT

Açaí (Euterpe oleracea Mart) is an Amazon plant with many biological properties. Previous report of this group evidenced autophagy induction after treatment with açaí seed extract in MCF-7 breast cancer cell lines by acridine orange assay. The aim of this study was to evaluate the ultrastructural changes induced by açaí seed extract in MCF-7 breast cancer cell lines. First, MCF- 7 breast cancer cell line viability was evaluated by MTT assay. Acridine orange assay showed increase in the acidic compartments, suggesting autophagolysosome formation. These cells were treated with 25 µg/ml for 24 h and evaluated by transmission electron microscopy (MET). This analysis showed that açaí seed extract induced autophagy, confirmed by autophagolysosome formation. Furthermore, açaí seed extract increased the number of mitochondria, suggesting the enrollment of reactive oxygen species in autophagy.


Subject(s)
Breast Neoplasms , Euterpe , Humans , Female , Euterpe/chemistry , MCF-7 Cells , Acridine Orange , Plant Extracts/pharmacology , Antioxidants/pharmacology
6.
Molecules ; 26(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200718

ABSTRACT

Euterpe oleracea Mart. (açai) is a native palm from the Amazon region. There are various chemical constituents of açai with bioactive properties. This study aimed to evaluate the chemical composition and cytotoxic effects of açai seed extract on breast cancer cell line (MCF-7). Global Natural Products Social Molecular Networking (GNPS) was applied to identify chemical compounds present in açai seed extract. LC-MS/MS and molecular networking were employed to detect the phenolic compounds of açai. The antioxidant activity of açai seed extract was measured by DPPH assay. MCF-7 breast cancer cell line viability was evaluated by MTT assay. Cell death was evaluated by flow cytometry and time-lapse microscopy. Autophagy was evaluated by orange acridin immunofluorescence assay. Reactive oxygen species (ROS) production was evaluated by DAF assay. From the molecular networking, fifteen compounds were identified, mainly phenolic compounds. The açai seed extract showed cytotoxic effects against MCF-7, induced morphologic changes in the cell line by autophagy and increased the ROS production pathway. The present study suggests that açai seed extract has a high cytotoxic capacity and may induce autophagy by increasing ROS production in breast cancer. Apart from its antioxidant activity, flavonoids with high radical scavenging activity present in açai also generated NO (nitric oxide), contributing to its cytotoxic effect and autophagy induction.


Subject(s)
Breast Neoplasms/drug therapy , Cell Death/drug effects , Euterpe/chemistry , Plant Extracts/pharmacology , Reactive Oxygen Species/metabolism , Seeds/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Autophagy/drug effects , Cell Line, Tumor , Chromatography, Liquid/methods , Female , Flavonoids/chemistry , Flavonoids/pharmacology , Fruit/chemistry , Humans , MCF-7 Cells , Phenols/chemistry , Phenols/pharmacology , Plant Extracts/chemistry , Polyphenols/chemistry , Polyphenols/pharmacology , Tandem Mass Spectrometry/methods
7.
ScientificWorldJournal ; 2020: 3727453, 2020.
Article in English | MEDLINE | ID: mdl-32410905

ABSTRACT

INTRODUCTION: In recent decades, there has been an intensification of environmental problems, which are becoming increasingly critical and frequent due to population growth. Microorganisms, including soilborne fungi, play an essential role in maintaining and balancing the environment. One of the most impacted ecosystems in São Luís, Maranhão, Brazil, is the Jansen Lagoon State Park, an important tourist spot, which has suffered anthropogenic actions such as the dumping of household waste (sewage) in its body of water. As a consequence, these pollutants can accumulate in the adjacent soil, since the body of water is near this substrate. The objectives were to isolate and identify filamentous fungi from the soil of the Jansen Lagoon State Park. METHODS: Monthly soil samples were collected and later processed using the modified suspension technique according to Clark (1965). RESULTS: The isolated genera were Aspergillus, Penicillium, Trichoderma, Absidia, and Fusarium. Aspergillus is the fungal genus of greater dominance in the soil of the Jansen Lagoon State Park. Aspergillus niger was the dominant species (37%), followed by A. tamarii (21.6%). CONCLUSION: The main isolated fungi from the Jansen Lagoon State Park were Aspergillus niger and Aspergillus tamrii. These fungi can be used as biological markers of pollution and as biodegraders and/or bioremediators to improve the area studied.


Subject(s)
Biodiversity , Environment , Fungi/classification , Oceans and Seas , Soil Microbiology , Brazil , Geography
8.
Rev Inst Med Trop Sao Paulo ; 60: e59, 2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30365642

ABSTRACT

INTRODUCTION: Candida parapsilosis is one of the main species that is able to adhere to forming biofilms on inert materials. Adhesion is the first step towards the colonization and invasion of host cells during the infectious process. Among the infections, vulvovaginal candidiasis is increasingly common. The objective was to evaluate the profile of adherence and biofilm formation of eight isolates of C. parapsilosis on the metal used in intrauterine devices (IUDs). METHODS: Eight strains of C. parapsilosis presenting strong adhesion and biofilm formation properties were isolated from vaginal secretions in a previous study. To assay the adhesion and biofilm formation, copper fragments were made and cultivated in tubes containing 3 mL of phosphate-buffered saline and incubated for 6 and 24 h at 37 °C to evaluate biofilm formation. After incubation, the intensity of adherence and of biofilm formation on copper fragments were determined by performing a colony count. RESULTS: All isolates were able to form biofilms and the isolate Cp62 showed many cells joined in a planktonic mode forming biofilms. The use of an IUD is one of the main factors that favors vulvovaginal candidiasis, and the presence of copper in this device increases the chance of recurrent vulvovaginal candidiasis (CVVR) due to the ease with which species of the genus Candida can adhere to inert surfaces. CONCLUSION: This research showed that the clinical isolates studied adhered to IUD copper fragments and formed biofilms, further increasing their virulence.


Subject(s)
Biofilms/growth & development , Candida parapsilosis/physiology , Candidiasis, Vulvovaginal/microbiology , Intrauterine Devices, Copper/microbiology , Candida parapsilosis/isolation & purification , Candidiasis, Vulvovaginal/etiology , Equipment Contamination , Female , Humans , Intrauterine Devices, Copper/adverse effects , Prospective Studies
9.
Rev. bras. anal. clin ; 44(3-4): 132-138, 2012. graf, tab
Article in English | LILACS | ID: lil-722773

ABSTRACT

Airborne fungi are considerate the main agents related to allergy in patients that suffer from asthma and rinitis. The knowledge about the prevalence of these microorganisms and theis seasonal variation can be useful for human health by improving the diagnosis and treatment of respiratory allergic disease provoked by their inhalation. The present study has isolated and identified airborne funfi from São Luis city investigating their prevalence, biodiversity and seasonal variation. Samples were taken by the Petri plate gravitacional method in six urban areas. A total of 2993 fungal colonies were counted, 67,9% in the dry season and 32,1% in the rainy season. Statistical analysis showed that there are significant diference (p=0,0121) between the averages of spores in dry and rainy periods. Relative humidity, rainfall precipitation and wind speed can have influenced the diversity and concentration of fungal spores presents in the air. Among 24 genera isolated, the most prevalent ones were Aspergillus (38,7)%, Fusarium (13,90%), Curvularia (11,18%) and Penicillium (10,88%), major triggers of allergic process worldwide recognized. The data show the presence of a large number of airborne fungi spores in São Luis and all genera found are opportunistic and they may cause disease in susceptible patients.


Subject(s)
Asthma , Aspergillus/isolation & purification , Biodiversity , Fungi , Fusarium/isolation & purification , Hypersensitivity , Rainy Season , Respiratory Tract Diseases , Rhinitis, Allergic, Seasonal , Data Interpretation, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...