Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Braz Dent J ; 35: e245619, 2024.
Article in English | MEDLINE | ID: mdl-38537015

ABSTRACT

This study investigated microshear bond strength (µSBS) of two (2) dual-cured resin-luting agents (RelyX™ Ultimate and RelyX™ U200) when photoactivated through varying thicknesses of lithium disilicate, with or without thermal cycling. Discs of IPS e.max Press of 0.5, 1.5, and 2 mm in thickness were obtained. Elastomer molds (3.0 mm in thickness) with four cylinder-shaped orifices 1.0 mm in diameter, were placed onto the ceramic surfaces and filled with resin-luting agents. A Mylar strip, glass plate, and load of 250 grams were placed over the filled mold. The load was removed and the resin-luting agents were photoactivated through the ceramics using a single-peak LED (Radii Plus.) All samples were stored in distilled water at 37oC for 24 h. Half of the samples were subjected to thermal cycling (3,000 cycles; 5ºC and 55ºC). All samples were then submitted to µSBS test using a universal testing machine (Instron 4411) at a crosshead speed of 0.5 mm/min. Data were submitted to three-way ANOVA and Tukey post-hoc test (α=0.05). The mean µSBS at 24 h was significantly higher than after thermal cycling (p<0.05). No statistical difference was found between resin-luting agents (p > 0.05). The mean µSBS for groups photoactivated through 0.5 mm ceramic were significantly higher than 1.5 mm and 2.0 mm (p < 0.05). In conclusion, increased ceramic thicknesses reduced the bond strength of tested resin-luting agents to lithium disilicate. No differences were found between resin-luting agents. Thermal cycling reduced the bond strength of both resin-luting agents.


Subject(s)
Dental Bonding , Dental Porcelain/chemistry , Ceramics/chemistry , Resin Cements/chemistry , Materials Testing , Surface Properties
2.
Braz. dent. j ; 35: e24, 2024. tab, graf
Article in English | LILACS-Express | LILACS, BBO - Dentistry | ID: biblio-1550094

ABSTRACT

Abstract This study investigated microshear bond strength (µSBS) of two (2) dual-cured resin-luting agents (RelyX™ Ultimate and RelyX™ U200) when photoactivated through varying thicknesses of lithium disilicate, with or without thermal cycling. Discs of IPS e.max Press of 0.5, 1.5, and 2 mm in thickness were obtained. Elastomer molds (3.0 mm in thickness) with four cylinder-shaped orifices 1.0 mm in diameter, were placed onto the ceramic surfaces and filled with resin-luting agents. A Mylar strip, glass plate, and load of 250 grams were placed over the filled mold. The load was removed and the resin-luting agents were photoactivated through the ceramics using a single-peak LED (Radii Plus.) All samples were stored in distilled water at 37oC for 24 h. Half of the samples were subjected to thermal cycling (3,000 cycles; 5ºC and 55ºC). All samples were then submitted to µSBS test using a universal testing machine (Instron 4411) at a crosshead speed of 0.5 mm/min. Data were submitted to three-way ANOVA and Tukey post-hoc test (α=0.05). The mean µSBS at 24 h was significantly higher than after thermal cycling (p<0.05). No statistical difference was found between resin-luting agents (p > 0.05). The mean µSBS for groups photoactivated through 0.5 mm ceramic were significantly higher than 1.5 mm and 2.0 mm (p < 0.05). In conclusion, increased ceramic thicknesses reduced the bond strength of tested resin-luting agents to lithium disilicate. No differences were found between resin-luting agents. Thermal cycling reduced the bond strength of both resin-luting agents.


Resumo: Este estudo investigou a resistência de união ao microcisalhamento (RUµC) de dois (2) agentes de cimentação de resina dual (RelyX™ Ultimate e RelyX™ U200) quando fotoativados através de diferentes espessuras de dissilicato de lítio, com ou sem ciclagem térmica. Discos do IPS e.max Press de 0,5, 1,5 e 2 mm de espessura foram obtidos. Moldes de elastômero (3,0 mm de espessura) com quatro orifícios cilíndricos de 1,0 mm de diâmetro foram colocados sobre as superfícies cerâmicas e preenchidos com agentes de cimentação de resina. Uma tira Mylar, placa de vidro e carga de 250 gramas foram colocadas sobre o molde preenchido. A carga foi removida e os agentes de cimentação resinosos foram fotoativados através da cerâmica usando um LED de pico-único (Radii Plus). Todas as amostras foram armazenadas em água deionizada a 37oC por 24 h. Metade das amostras foi submetida a ciclagem térmica (3.000 ciclos; 5ºC e 55ºC). Todas as amostras foram então submetidas ao teste de RUµC usando uma máquina de teste universal (Instron 4411) com velocidade de 0,5 mm/min. Os dados foram submetidos à Análise de Variância três fatores e ao teste post-hoc de Tukey (α = 0,05). A média de RUµC em 24 h foi significativamente maior do que após a ciclagem térmica (p < 0,05). Não houve diferença estatística entre os cimentos resinosos (p > 0,05). As médias de RUµC para grupos fotoativados através de cerâmica de 0,5 mm foram significativamente maiores do que 1,5 mm e 2,0 mm (p < 0,05). Em conclusão, o aumento da espessura da cerâmica reduziu a resistência de união dos agentes de cimentação resinosos ao dissilicato de lítio. Não foram encontradas diferenças entre os agentes de cimentação resinosos. A ciclagem térmica reduziu a resistência de união de ambos os agentes de cimentação resinosos.

3.
Int Orthod ; 20(2): 100631, 2022 06.
Article in English | MEDLINE | ID: mdl-35272970

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the physical-chemical changes in orthodontic devices made with laser and silver solder after immersion in different antiseptic solutions. METHODS: Wire/band assemblies were fabricated using different types of solders (silver and laser). The devices were immersed in different antimicrobial solutions (chlorhexidine - CHX 0.12% and Silver nanoparticles - NAg 0.12% and 0.18%). Non-immersion in solution and immersion in artificial saliva were used as initial and negative control, respectively (n=12). Surface morphological analysis was performed using Scanning Electron Microscopy (SEM). The quantitative analysis of the chemical elements present after the immersions in the solutions was analysed by Energy Dispersive X-ray Spectroscopy (EDS). The data were subjected to the Kruskal-Wallis test followed by Bonferroni, with a significance level of 5%. RESULTS: Greater amounts of copper, silver and zinc were released from silver soldering, on the other hand, iron, nickel, and chromium ions were the most prevalent metal ions in laser soldering. Regarding mouthwashes, the lowest amounts of metal ions were released in CHX, and the highest amounts of ions were released in the 0.12% NAg and 0.18% NAg solutions. CONCLUSIONS: Laser welding seems to be less susceptible to corrosion. The different antiseptic solutions did not contribute to an increase in ion release.


Subject(s)
Anti-Infective Agents, Local , Dental Soldering , Metal Nanoparticles , Chlorhexidine , Corrosion , Dental Soldering/methods , Humans , Ions , Lasers , Materials Testing , Orthodontic Appliances , Silver/chemistry
4.
J Mater Sci Mater Med ; 32(8): 90, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34338911

ABSTRACT

This in vitro study evaluates the influence of pressed lithium disilicate thickness, shade and translucency on the transmitted irradiance and the Knoop microhardness (KHN) of a light-cured resin cement at two depths. One hundred and thirty-five ceramic discs of IPS e.max Press (Ivoclar Vivadent) were fabricated and divided into twenty-seven groups (n = 5) according to the association between translucency: HT (hight translucency), LT (low translucency), and MO (medium opacity); shade: BL2, A1 and A3.5; and thickness: 0.5 mm, 1.5 mm, and 2.0 mm. One side of each ceramic disc was finished, polished and glazed. The irradiance (mW/cm²) of a multiwave LED light curing unit (Valo, Ultradent) was evaluated with a potentiometer (Ophir 10ª-V2-SH, Ophir Optronics) without (control group) or with interposition of ceramic samples. The microhardness of Variolink Esthetic LC resin cement (Ivoclar Vivadent) was evaluated after 24 h at two depths (100 µm and 700 µm). Data were submitted to ANOVA followed by Tukey's test (α = 0.05). Irradiance and KHN were significantly influenced by ceramic thickness (p < 0.0001), shade (p < 0.001), translucency (p < 0.0001) and depth (p < 0.0001). Conclusions: the interposition of increasing ceramic thicknesses significantly reduced the irradiance and microhardness of resin cement. Increased depth in the resin cement showed significantly reduced microhardness for all studied groups. Increased ceramic opacity reduced the KHN of the resin cement at both depths for all ceramic thicknesses and shades.


Subject(s)
Bone Cements , Ceramics/chemistry , Dental Porcelain/chemistry , Acrylic Resins , Composite Resins , Curing Lights, Dental , Hardness , Light , Light-Curing of Dental Adhesives , Materials Testing , Polymerization , Polyurethanes , Reproducibility of Results , Resin Cements , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...