Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 558: 14-27, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24960080

ABSTRACT

Nitric oxide (NO) is involved in angiogenesis and stimulates the EGF-R signaling pathway. Stimulation of different endothelial cell lines with bradykinin (BK) activates the endothelial NO synthase (eNOS) and promotes EGF-R tyrosine phosphorylation. Increase in NO production correlated with enhanced phosphorylation of tyrosine residues and S-nitrosylation of the EGF-R. NO-mediated stimulatory effects on tyrosine phosphorylation of the EGF-R, where cGMP independent. Inhibition of soluble guanylyl cyclase followed by BK stimulation of human umbilical vein endothelial cells (HUVECs) did not change tyrosine phosphorylation levels of EGF-R. BK-stimulation of HUVEC promoted S-nitrosylation of the phosphatase SHP-1 and of p21Ras. Phosphorylation and activation of the ERK1/2 MAP kinases mediated by BK was dependent on the activation of the B2 receptor, of the EGF-R, and of p21 Ras. Inhibition of BK-stimulated S-nitrosylation prevented the activation of the ERK1/2 MAP kinases. Furthermore, activated ERK1/2 MAP kinases inhibited internalization of EGF-R by phosphorylating specific Thr residues of its cytoplasmic domain. BK-induced proliferation of endothelial cells was partially inhibited by the NOS inhibitor (L-NAME) and by the MEK inhibitor (PD98059). BK stimulated the expression of vascular endothelial growth factor (VEGF). VEGF expression was dependent on the activation of the EGF-R, the B2 receptor, p21Ras, and on NO generation. A Matrigel®-based in vitro assay for angiogenesis showed that BK induced the formation of capillary-like structures in HUVEC, but not in those cells expressing a mutant of the EGF-R lacking tyrosine kinase activity. Additionally, pre-treatment of BK-stimulated HUVEC with L-NAME, PD98059, and with SU5416, a specific inhibitor of VEGFR resulted in inhibition of in vitro angiogenesis. Our findings indicate that BK-mediated angiogenesis in endothelial cells involves the induction of the expression of VEGF associated with the activation of the NO/EGF-R/p21Ras/ERK1/2 MAP kinases signaling pathway.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Bradykinin/pharmacology , ErbB Receptors/metabolism , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Neovascularization, Physiologic/drug effects , Nitric Oxide/metabolism , Signal Transduction/drug effects , Animals , Cell Proliferation/drug effects , ErbB Receptors/genetics , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Nitric Oxide/biosynthesis , Phosphorylation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Rabbits , S-Nitrosothiols/metabolism , Tyrosine/metabolism
2.
Antioxid Redox Signal ; 13(2): 109-25, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20055753

ABSTRACT

The role of NO in regulating the focal adhesion proteins, Src, FAK, p130 Cas, and PTP-alpha, was investigated. Fibroblasts expressing PTP-alpha (PTP-alpha(WT) cells), fibroblasts "knockout" for PTP-alpha (PTP-alpha(-/-) cells), and "rescued" "knockout" fibroblasts (PTP-alpha A5/3 cells) were stimulated with either S-nitroso-N-acetylpenicillamine (SNAP) or fetal bovine serum (FBS). FBS increased inducible NO synthase in both cell lines. Activation of Src mediated either by SNAP or by FBS occurred independent of dephosphorylation of Tyr527 in PTP-alpha(-/-) cells. Both stimuli promoted dephosphorylation of Tyr527 and activation of Src kinase in PTP-alpha(WT) cells. NO-mediated activation of Src kinase affected the activities of FAK and p130Cas and was dependent on the expression of PTP-alpha. Analogous to tyrosine phosphorylation, SNAP and FBS stimulated differential generation of NO and S-nitrosylation of Src kinase in both cell lines. Incubation with SNAP resulted in higher levels of NO and S-nitrosylation of immunoprecipitated Src in PTP-alpha(-/-) cells (oxidizing redox environment) as compared with the levels of NO and S-nitrosylated Src in PTP-alpha(WT) cells (reducing redox environment). SNAP differentially stimulated cell proliferation of both cell lines is dependent on the intracellular redox environment, Src activity, and PTP-alpha expression. This dependence also is observed with FBS-stimulated cell migration.


Subject(s)
Crk-Associated Substrate Protein/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Nitric Oxide/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 4/metabolism , src-Family Kinases/metabolism , Animals , Cattle , Cell Movement , Cell Proliferation , Cells, Cultured , Crk-Associated Substrate Protein/genetics , Fibroblasts/cytology , Fibroblasts/physiology , Focal Adhesion Protein-Tyrosine Kinases/genetics , Mice , Mice, Knockout , Nitric Oxide/genetics , Nitric Oxide Donors/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidation-Reduction , Receptor-Like Protein Tyrosine Phosphatases, Class 4/genetics , S-Nitroso-N-Acetylpenicillamine/metabolism , src-Family Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...