Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(22)2022 11 16.
Article in English | MEDLINE | ID: mdl-36429055

ABSTRACT

Zika virus (ZIKV) compromises placental integrity, infecting the fetus. However, the mechanisms associated with ZIKV penetration into the placenta leading to fetal infection are unknown. Cystatin B (CSTB), the receptor for advanced glycation end products (RAGE), and tyrosine-protein kinase receptor UFO (AXL) have been implicated in ZIKV infection and inflammation. This work investigates CSTB, RAGE, and AXL receptor expression and activation pathways in ZIKV-infected placental tissues at term. The hypothesis is that there is overexpression of CSTB and increased inflammation affecting RAGE and AXL receptor expression in ZIKV-infected placentas. Pathological analyses of 22 placentas were performed to determine changes caused by ZIKV infection. Quantitative proteomics, immunofluorescence, and western blot were performed to analyze proteins and pathways affected by ZIKV infection in frozen placentas. The pathological analysis confirmed decreased size of capillaries, hyperplasia of Hofbauer cells, disruption in the trophoblast layer, cell agglutination, and ZIKV localization to the trophoblast layer. In addition, there was a significant decrease in CSTB, RAGE, and AXL expression and upregulation of caspase 1, tubulin beta, and heat shock protein 27. Modulation of these proteins and activation of inflammasome and pyroptosis pathways suggest targets for modulation of ZIKV infection in the placenta.


Subject(s)
Zika Virus Infection , Zika Virus , Humans , Female , Pregnancy , Zika Virus/physiology , Receptor for Advanced Glycation End Products/metabolism , Cystatin B/metabolism , Placenta/metabolism , Transcription Factors/metabolism , Inflammation/pathology
2.
Sci Rep ; 12(1): 233, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34996989

ABSTRACT

HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy (cART), affecting 52% of people living with HIV. Our laboratory has demonstrated increased expression of cathepsin B (CATB) in postmortem brain tissue with HAND. Increased secretion of CATB from in vitro HIV-infected monocyte-derived macrophages (MDM) induces neurotoxicity. Activation of cannabinoid receptor type 2 (CB2R) inhibits HIV-1 replication in macrophages and the neurotoxicity induced by viral proteins. However, it is unknown if CB2R agonists affect CATB secretion and neurotoxicity in HIV-infected MDM. We hypothesized that HIV-infected MDM exposed to CB2R agonists decrease CATB secretion and neurotoxicity. Primary MDM were inoculated with HIV-1ADA and treated with selective CB2R agonists JWH-133 and HU-308. HIV-1 p24 and CATB levels were determined from supernatants using ELISA. MDM were pre-treated with a selective CB2R antagonist SR144528 before JWH-133 treatment to determine if CB2R activation is responsible for the effects. Neuronal apoptosis was assessed using a TUNEL assay. Results show that both agonists reduce HIV-1 replication and CATB secretion from MDM in a time and dose-dependent manner and that CB2R activation is responsible for these effects. Finally, JWH-133 decreased HIV/MDM-CATB induced neuronal apoptosis. Our results suggest that agonists of CB2R represent a potential therapeutic strategy against HIV/MDM-induced neurotoxicity.


Subject(s)
Cannabinoids/pharmacology , Cathepsin B/metabolism , HIV Infections/complications , Macrophages/drug effects , Neurocognitive Disorders/etiology , Receptor, Cannabinoid, CB2/agonists , Apoptosis/drug effects , Cathepsin B/genetics , Cathepsin B/toxicity , HIV Infections/virology , HIV-1/physiology , Humans , Macrophages/cytology , Macrophages/metabolism , Neurocognitive Disorders/genetics , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/physiopathology , Neurons/cytology , Neurons/metabolism , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Virus Replication/drug effects
3.
J Mol Histol ; 53(2): 199-214, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34264436

ABSTRACT

Zika virus (ZIKV) infection has been associated with fetal abnormalities by compromising placental integrity, but the mechanisms by which this occurs are unknown. Flavivirus can deregulate the host proteome, especially extracellular matrix (ECM) proteins. We hypothesize that a deregulation of specific ECM proteins by ZIKV, affects placental integrity. Using twelve different placental samples collected during the 2016 ZIKV Puerto Rico epidemic, we compared the proteome of five ZIKV infected samples with four uninfected controls followed by validation of most significant proteins by immunohistochemistry. Quantitative proteomics was performed using tandem mass tag TMT10plex™ Isobaric Label Reagent Set followed by Q Exactive™ Hybrid Quadrupole Orbitrap Mass Spectrometry. Identification of proteins was performed using Proteome Discoverer 2.1. Proteins were compared based on the fold change and p value using Limma software. Significant proteins pathways were analyzed using Ingenuity Pathway (IPA). TMT analysis showed that ZIKV infected placentas had 94 reviewed differentially abundant proteins, 32 more abundant, and 62 less abundant. IPA analysis results indicate that 45 of the deregulated proteins are cellular components of the ECM and 16 play a role in its structure and organization. Among the most significant proteins in ZIKV positive placenta were fibronectin, bone marrow proteoglycan, and fibrinogen. Of these, fibrinogen was further validated by immunohistochemistry in 12 additional placenta samples and found significantly increased in ZIKV infected placentas. The upregulation of this protein in the placental tissue suggests that ZIKV infection is promoting the coagulation of placental tissue and restructuration of ECM potentially affecting the integrity of the tissue and facilitating dissemination of the virus from mother to the fetus.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Extracellular Matrix/metabolism , Extracellular Matrix Proteins , Female , Fibrinogen , Humans , Placenta/metabolism , Pregnancy , Proteome/analysis , Zika Virus/physiology , Zika Virus Infection/complications , Zika Virus Infection/metabolism
4.
Virol Immunol J ; 4(2)2020.
Article in English | MEDLINE | ID: mdl-34485853

ABSTRACT

The respiratory disease caused by the Coronavirus infectious disease 2019 (COVID19) has spread rapidly since December 2019 in Wuhan, China. This new strain of Coronavirus is similar to the SARS Corona virus and has been termed SARS-CoV-2. Both viruses have emerged from bats and adapted to humans. On March 11, 2020 COVID19 was declared Pandemic by the WHO and as of May 1, 2020 COVID19 disease continues to grow rapidly with 3,400,595 cases and 239,583 deaths world-wide. This review describes the biology of SARSCOV2, Detection, Macrophage-Mediated Pathogenesis and Potential Treatments.

5.
J Neuroimmune Pharmacol ; 13(3): 345-354, 2018 09.
Article in English | MEDLINE | ID: mdl-29987592

ABSTRACT

HIV-associated neurocognitive disorders (HAND) are prevalent despite combined antiretroviral therapy, affecting nearly half of HIV-infected patients worldwide. During HIV infection of macrophages secretion of the lysosomal protein, cathepsin B, is increased. Secreted cathepsin B has been shown to induce neurotoxicity. Oxidative stress is increased in HIV-infected patients, while antioxidants are decreased in monocytes from patients with HIV-associated dementia (HAD). Dimethyl fumarate (DMF), an antioxidant, has been reported to decrease HIV replication and neurotoxicity mediated by HIV-infected macrophages. Thus, we hypothesized that DMF will decrease cathepsin B release from HIV-infected macrophages by preventing oxidative stress and enhancing lysosomal function. Monocyte-derived macrophages (MDM) were isolated from healthy donors, inoculated with HIV-1ADA, and treated with DMF following virus removal. After 12 days post-infection, HIV-1 p24 and total cathepsin B levels were measured from HIV-infected MDM supernatants using ELISA; intracellular reactive oxygen and nitrogen species (ROS/RNS) were measured from MDM lysates, and functional lysosomes were assessed using a pH-dependent lysosomal dye. Neurons were incubated with serum-free conditioned media from DMF-treated MDM and neurotoxicity was determined using TUNEL assay. Results indicate that DMF reduced HIV-1 replication and cathepsin B secretion from HIV-infected macrophages in a dose-dependent manner. Also, DMF decreased intracellular ROS/RNS levels, and prevented HIV-induced lysosomal dysfunction and neuronal apoptosis. In conclusion, the improvement in lysosomal function with DMF treatment may represent the possible mechanism to reduce HIV-1 replication and cathepsin B secretion. DMF represents a potential therapeutic strategy against HAND.


Subject(s)
Antioxidants/therapeutic use , Cathepsin B/metabolism , Dimethyl Fumarate/therapeutic use , HIV Infections/prevention & control , Macrophages/metabolism , AIDS Dementia Complex/pathology , Apoptosis/drug effects , HIV Core Protein p24/metabolism , HIV Infections/pathology , HIV-1/drug effects , Humans , In Situ Nick-End Labeling , Macrophages/drug effects , Oxidative Stress/drug effects , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...