Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
Front Immunol ; 15: 1266349, 2024.
Article in English | MEDLINE | ID: mdl-38605941

ABSTRACT

We have previously argued that the antigen receptors of T and B lymphocytes evolved to be sufficiently specific to avoid massive deletion of clonotypes by negative selection. Their optimal 'specificity' level, i.e., probability of binding any particular epitope, was shown to be inversely related to the number of self-antigens that the cells have to be tolerant to. Experiments have demonstrated that T lymphocytes also become more specific during negative selection in the thymus, because cells expressing the most crossreactive receptors have the highest likelihood of binding a self-antigen, and hence to be tolerized (i.e., deleted, anergized, or diverted into a regulatory T cell phenotype). Thus, there are two -not mutually exclusive- explanations for the exquisite specificity of T cells, one involving evolution and the other thymic selection. To better understand the impact of both, we extend a previously developed mathematical model by allowing for T cells with very different binding probabilities in the pre-selection repertoire. We confirm that negative selection tends to tolerize the most crossreactive clonotypes. As a result, the average level of specificity in the functional post-selection repertoire depends on the number of self-antigens, even if there is no evolutionary optimization of binding probabilities. However, the evolutionary optimal range of binding probabilities in the pre-selection repertoire also depends on the number of self-antigens. Species with more self antigens need more specific pre-selection repertoires to avoid excessive loss of T cells during thymic selection, and hence mount protective immune responses. We conclude that both evolution and negative selection are responsible for the high level of specificity of lymphocytes.


Subject(s)
T-Lymphocytes, Regulatory , Thymus Gland , Autoantigens , B-Lymphocytes , Epitopes
2.
Vaccines (Basel) ; 12(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38675801

ABSTRACT

To protect older adults against influenza A virus (IAV) infection, innovative strategies are imperative to overcome the decrease in protective immune response with age. One approach involves the boosting of CD8+ T cells at middle age that were previously induced by natural infection. At this stage, the immune system is still fit. Given the high conservation of T-cell epitopes within internal viral proteins, such a response may confer lasting protection against evolving influenza strains at older age, also reducing the high number of influenza immunizations currently required. However, at the time of vaccination, some individuals may have been more recently exposed to IAV than others, which could affect the T-cell response. We therefore investigated the fundamental principle of how the interval between the last infection and booster immunization during middle age influences the CD8+ T-cell response. To model this, female mice were infected at either 6 or 9 months of age and subsequently received a heterosubtypic infection booster at middle age (12 months). Before the booster infection, 6-month-primed mice displayed lower IAV-specific CD8+ T-cell responses in the spleen and lung than 9-month-primed mice. Both groups were better protected against the subsequent heterosubtypic booster infection compared to naïve mice. Notably, despite the different CD8+ T-cell levels between the 6-month- and 9-month-primed mice, we observed comparable responses after booster infection, based on IFNγ responses, and IAV-specific T-cell frequencies and repertoire diversity. Lung-derived CD8+ T cells of 6- and 9-month-primed mice expressed similar levels of tissue-resident memory-T-cell markers 30 days post booster infection. These data suggest that the IAV-specific CD8+ T-cell response after boosting is not influenced by the time post priming.

3.
Pediatr Infect Dis J ; 43(1): e1-e2, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38100732

ABSTRACT

The European Medicines Agency and the US Food and Drug Administration have recently approved a maternal vaccine for respiratory syncytial virus. The US Food and Drug Administration limits vaccination to later in pregnancy. Mathematical modeling demonstrates that this vaccination window may reduce the global mortality impact of the vaccine by 12%. Policymakers should carefully consider vaccine risks and benefits to safeguard vulnerable infants effectively.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Infant , Pregnancy , Female , Humans , Vaccination , Family
4.
Vaccine X ; 15: 100379, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37711264

ABSTRACT

Background: Respiratory syncytial virus (RSV) is a leading cause of childhood mortality in infants below 6 months of age. In low-income and middle-income countries (LMICs), the public health burden is substantial and resources are limited. It is critical to inform decision makers about effectiveness of new interventions. Methods: We developed a mathematical model where individual RSV subtype A (RSV-A) and B (RSV-B) maternally derived neutralizing titers were predicted at time of birth after maternal vaccination with the RSV prefusion F protein-based vaccine. We estimated the subsequent duration of vaccine-induced immunity and compared this to the age at time of death distribution in the RSV GOLD Mortality Database to predict the potential impact of maternal vaccination on RSV-related childhood mortality. We used country-specific timing of antenatal care visits distributions and mortality estimates to make country-specific predictions for number of cases averted. Findings: The model predicts that on average a neonate born at 40 weeks gestational age will be protected between 6 and 7 months from RSV-A and approximately 5 months from RSV-B related mortality. We estimated the potential impact of RSV-related mortality for in-hospital and out-of-hospital cases in LMICs and predicted that in 51 GAVI-eligible countries maternal vaccination could avert between 55% and 63% of the RSV-related in-hospital mortality cases below 6 months of age. Interpretation: We show that maternal vaccination could substantially decrease RSV-A and RSV-B related in-hospital and out-of-hospital mortality in LMICs in the first 6 months of life.

5.
Semin Immunol ; 70: 101839, 2023 11.
Article in English | MEDLINE | ID: mdl-37716048

ABSTRACT

It is well-known that the functioning of the immune system gradually deteriorates with age, and we are increasingly confronted with its consequences as the life expectancy of the human population increases. Changes in the T-cell pool are among the most prominent features of the changing immune system during healthy ageing, and changes in the naive T-cell pool in particular are generally held responsible for its gradual deterioration. These changes in the naive T-cell pool are thought to be due to involution of the thymus. It is commonly believed that the gradual loss of thymic output induces compensatory mechanisms to maintain the number of naive T cells at a relatively constant level, and induces a loss of diversity in the T-cell repertoire. Here we review the studies that support or challenge this widely-held view of immune ageing and discuss the implications for vaccination strategies.


Subject(s)
Healthy Aging , T-Lymphocytes , Humans , Aging , Thymus Gland
6.
J Dermatol Sci ; 111(3): 101-108, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37543503

ABSTRACT

BACKGROUND: Psoriasis is an immune-mediated inflammatory skin disease. Psoriasis severity evaluation is important for clinicians in the assessment of disease severity and subsequent clinical decision making. However, no objective biomarker is available for accurately evaluating disease severity in psoriasis. OBJECTIVE: To define and compare biomarkers of disease severity and progression in psoriatic skin. METHODS: We performed proteome profiling to study the proteins circulating in the serum from patients with psoriasis, psoriatic arthritis and ankylosing spondylitis, and transcriptome sequencing to investigate the gene expression in skin from the same cohort. We then used machine learning approaches to evaluate different biomarker candidates across several independent cohorts. In order to reveal the cell-type specificity of different biomarkers, we also analyzed a single-cell dataset of skin samples. In-situ staining was applied for the validation of biomarker expression. RESULTS: We identified that the peptidase inhibitor 3 (PI3) was significantly correlated with the corresponding local skin gene expression, and was associated with disease severity. We applied machine learning methods to confirm that PI3 was an effective psoriasis classifier, Finally, we validated PI3 as psoriasis biomarker using in-situ staining and public datasets. Single-cell data and in-situ staining indicated that PI3 was specifically highly expressed in keratinocytes from psoriatic lesions. CONCLUSION: Our results suggest that PI3 may be a psoriasis-specific biomarker for disease severity and hyper-keratinization.

7.
NPJ Vaccines ; 8(1): 116, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573454

ABSTRACT

CD8 + T cells are promising targets for vaccination against influenza A virus (IAV) infection. Their induction via peptide vaccination is not trivial, because peptides are weakly immunogenic. One strategy to overcome this is by vaccination with chemically enhanced altered peptide ligands (CPLs), which have improved MHC-binding and immunogenicity. It remains unknown how peptide-modification affects the resulting immune response. We studied the effect of CPLs derived from the influenza M158-66 epitope (GILGFVFTL) on the T-cell response. In HLA-A2*0201 transgenic mice, CPL-vaccination led to higher T-cell frequencies, but only a small percentage of the induced T cells recognized the GILG-wildtype (WT) peptide. CPL-vaccination resulted in a lower richness of the GILG-WT-specific T-cell repertoire and no improved protection against IAV-infection compared to GILG-WT peptide-vaccination. One CPL even appeared to enhance pathology after IAV-challenge. CPL-vaccination thus induces T cells not targeting the original peptide, which may lead to potential unwanted side effects.

8.
Front Immunol ; 14: 1210168, 2023.
Article in English | MEDLINE | ID: mdl-37520553

ABSTRACT

T cells recognize pathogens by their highly specific T-cell receptor (TCR), which can bind small fragments of an antigen presented on the Major Histocompatibility Complex (MHC). Antigens that are provided through vaccination cause specific T cells to respond by expanding and forming specific memory to combat a future infection. Quantification of this T-cell response could improve vaccine monitoring or identify individuals with a reduced ability to respond to a vaccination. In this proof-of-concept study we use longitudinal sequencing of the TCRß repertoire to quantify the response in the CD4+ memory T-cell pool upon pneumococcal conjugate vaccination. This comes with several challenges owing to the enormous size and diversity of the T-cell pool, the limited frequency of vaccine-specific TCRs in the total repertoire, and the variation in sample size and quality. We defined quantitative requirements to classify T-cell expansions and identified critical parameters that aid in reliable analysis of the data. In the context of pneumococcal conjugate vaccination, we were able to detect robust T-cell expansions in a minority of the donors, which suggests that the T-cell response against the conjugate in the pneumococcal vaccine is small and/or very broad. These results indicate that there is still a long way to go before TCR sequencing can be reliably used as a personal biomarker for vaccine-induced protection. Nevertheless, this study highlights the importance of having multiple samples containing sufficient T-cell numbers, which will support future studies that characterize T-cell responses using longitudinal TCR sequencing.


Subject(s)
Receptors, Antigen, T-Cell , Vaccination , Humans , Feasibility Studies , Receptors, Antigen, T-Cell/genetics , CD4-Positive T-Lymphocytes
9.
J Immunol ; 210(12): 1882-1888, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37125851

ABSTRACT

Lymphocyte numbers naturally change through age. Normalization functions to account for this are sparse and mostly disregard measurements from children in which these changes are most prominent. In this study, we analyze cross-sectional numbers of mainly T lymphocytes (CD3+, CD3+CD4+, and CD3+CD8+) and their subpopulations (naive and memory) from 673 healthy Dutch individuals ranging from infancy to adulthood (0-62 y). We fitted the data by a delayed exponential function and estimated parameters for each lymphocyte subset. Our modeling approach follows general laboratory measurement procedures in which absolute cell counts of T lymphocyte subsets are calculated from observed percentages within a reference population that is truly counted (typically the total lymphocyte count). Consequently, we obtain one set of parameter estimates per T cell subset representing both the trajectories of their counts and percentages. We allow for an initial time delay of half a year before the total lymphocyte counts per microliter of blood start to change exponentially, and we find that T lymphocyte trajectories tend to increase during the first half a year of life. Thus, our study provides functions describing the general trajectories of T lymphocyte counts and percentages of the Dutch population. These functions provide important references to study T lymphocyte dynamics in disease, and they allow one to quantify losses and gains in longitudinal data, such as the CD4+ T cell decline in HIV-infected children and/or the rate of T cell recovery after the onset of treatment.


Subject(s)
Lymphocyte Subsets , T-Lymphocyte Subsets , Child , Humans , Cross-Sectional Studies , CD4-Positive T-Lymphocytes , Lymphocyte Count
10.
Immunol Rev ; 316(1): 38-51, 2023 07.
Article in English | MEDLINE | ID: mdl-37114435

ABSTRACT

Memory T cells form an essential part of immunological memory, which can last for years or even a lifetime. Much experimental work has shown that the individual cells that make up the memory T-cell pool are in fact relatively short-lived. Memory T cells isolated from the blood of humans, or the lymph nodes and spleen of mice, live about 5-10 fold shorter than naive T cells, and much shorter than the immunological memory they convey. The commonly accepted view is, therefore, that long-term T-cell memory is maintained dynamically rather than by long-lived cells. This view is largely based on memory T cells in the circulation, identified using rather broad phenotypic markers, and on research in mice living in overly clean conditions. We wondered to what extent there may be heterogeneity in the dynamics and lifespans of memory T cells. We here review what is currently known about the dynamics of memory T cells in different memory subsets, locations in the body and conditions of microbial exposure, and discuss how this may be related to immunometabolism and how this knowledge can be used in various clinical settings.


Subject(s)
Lymph Nodes , Memory T Cells , Humans , Animals , Mice , Immunologic Memory , T-Lymphocyte Subsets , CD8-Positive T-Lymphocytes
11.
Front Immunol ; 13: 1059481, 2022.
Article in English | MEDLINE | ID: mdl-36483556

ABSTRACT

A timely recovery of T-cell numbers following haematopoietic stem-cell transplantation (HSCT) is essential for preventing complications, such as increased risk of infection and disease relapse. In analogy to the occurrence of lymphopenia-induced proliferation in mice, T-cell dynamics in humans are thought to be homeostatically regulated in a cell density-dependent manner. The idea is that T cells divide faster and/or live longer when T-cell numbers are low, thereby helping the reconstitution of the T-cell pool. T-cell reconstitution after HSCT is, however, known to occur notoriously slowly. In fact, the evidence for the existence of homeostatic mechanisms in humans is quite ambiguous, since lymphopenia is often associated with infectious complications and immune activation, which confound the study of homeostatic regulation. This calls into question whether homeostatic mechanisms aid the reconstitution of the T-cell pool during lymphopenia in humans. Here we review the changes in T-cell dynamics in different situations of T-cell deficiency in humans, including the early development of the immune system after birth, healthy ageing, HIV infection, thymectomy and hematopoietic stem cell transplantation (HSCT). We discuss to what extent these changes in T-cell dynamics are a side-effect of increased immune activation during lymphopenia, and to what extent they truly reflect homeostatic mechanisms.


Subject(s)
HIV Infections , Humans , Animals , Mice , T-Lymphocytes
12.
Front Immunol ; 13: 947242, 2022.
Article in English | MEDLINE | ID: mdl-36059495

ABSTRACT

The fact that T-cell numbers remain relatively stable throughout life, and that T-cell proliferation rates increase during lymphopenia, has led to the consensus that T-cell numbers are regulated in a density-dependent manner. Competition for resources among memory T cells has been proposed to underlie this 'homeostatic' regulation. We first review how two classic models of resource competition affect the T-cell receptor (TCR) diversity of the memory T-cell pool. First, 'global' competition for cytokines leads to a skewed repertoire that tends to be dominated by the very first immune response. Second, additional 'cognate' competition for specific antigens results in a very diverse and stable memory T-cell pool, allowing every antigen to be remembered, which we therefore define as the 'gold-standard'. Because there is limited evidence that memory T cells of the same specificity compete more strongly with each other than with memory T cells of different specificities, i.e., for 'cognate' competition, we investigate whether cellular aging could account for a similar level of TCR diversity. We define cellular aging as a declining cellular fitness due to reduced proliferation. We find that the gradual erosion of previous T-cell memories due to cellular aging allows for better establishment of novel memories and for a much higher level of TCR diversity compared to global competition. A small continual source (either from stem-cell-like memory T-cells or from naive T-cells due to repeated antigen exposure) improves the diversity of the memory T-cell pool, but remarkably, only in the cellular aging model. We further show that the presence of a source keeps the inflation of chronic memory responses in check by maintaining the immune memories to non-chronic antigens. We conclude that cellular aging along with a small source provides a novel and immunologically realistic mechanism to achieve and maintain the 'gold-standard' level of TCR diversity in the memory T-cell pool.


Subject(s)
Immunologic Memory , Memory T Cells , Cellular Senescence , Homeostasis , Receptors, Antigen, T-Cell
13.
Front Immunol ; 13: 921408, 2022.
Article in English | MEDLINE | ID: mdl-35874668

ABSTRACT

Psoriasis is a chronic inflammatory skin disorder. Although it has been studied extensively, the molecular mechanisms driving the disease remain unclear. In this study, we utilized a tree-based machine learning approach to explore the gene regulatory networks underlying psoriasis. We then validated the regulators and their networks in an independent cohort. We identified some key regulators of psoriasis, which are candidates to serve as potential drug targets and disease severity biomarkers. According to the gene regulatory network that we identified, we suggest that interferon signaling represents a key pathway of psoriatic inflammation.


Subject(s)
Gene Regulatory Networks , Psoriasis , Biomarkers/metabolism , Humans , Machine Learning , Psoriasis/genetics , Psoriasis/metabolism , Skin/metabolism
14.
J Immunol ; 208(4): 799-806, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35091435

ABSTRACT

The potential of memory T cells to provide protection against reinfection is beyond question. Yet, it remains debated whether long-term T cell memory is due to long-lived memory cells. There is ample evidence that blood-derived memory phenotype CD8+ T cells maintain themselves through cell division, rather than through longevity of individual cells. It has recently been proposed, however, that there may be heterogeneity in the lifespans of memory T cells, depending on factors such as exposure to cognate Ag. CMV infection induces not only conventional, contracting T cell responses, but also inflationary CD8+ T cell responses, which are maintained at unusually high numbers, and are even thought to continue to expand over time. It has been proposed that such inflating T cell responses result from the accumulation of relatively long-lived CMV-specific memory CD8+ T cells. Using in vivo deuterium labeling and mathematical modeling, we found that the average production rates and expected lifespans of mouse CMV-specific CD8+ T cells are very similar to those of bulk memory-phenotype CD8+ T cells. Even CMV-specific inflationary CD8+ T cell responses that differ 3-fold in size were found to turn over at similar rates.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Host-Pathogen Interactions/immunology , Immunologic Memory , Memory T Cells/immunology , Memory T Cells/metabolism , Muromegalovirus/immunology , Algorithms , Animals , Biomarkers , CD8-Positive T-Lymphocytes/metabolism , Cytomegalovirus Infections/virology , Epitopes, T-Lymphocyte/immunology , Female , Immunophenotyping , Mice , Models, Theoretical , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
15.
Vaccines (Basel) ; 9(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34960178

ABSTRACT

Waning of the mumps virus (MuV)-specific humoral response after vaccination has been suggested as a cause for recent mumps outbreaks in vaccinated young adults, although it cannot explain all cases. Moreover, CD8+ T cells may play an important role in the response against MuV; however, little is known about the characteristics and dynamics of the MuV-specific CD8+ T-cell response after MuV infection. Here, we had the opportunity to follow the CD8+ T-cell response to three recently identified HLA-A2*02:01-restricted MuV-specific epitopes from 1.5 to 36 months post-MuV infection in five previously vaccinated and three unvaccinated individuals. The infection-induced CD8+ T-cell response was dominated by T cells specific for the ALDQTDIRV and LLDSSTTRV epitopes, while the response to the GLMEGQIVSV epitope was subdominant. MuV-specific CD8+ T-cell frequencies in the blood declined between 1.5 and 9 months after infection. This decline was not explained by changes in the expression of inhibitory receptors or homing markers. Despite the ongoing changes in the frequencies and phenotype of MuV-specific CD8+ T cells, TCRß analyses revealed a stable MuV-specific T-cell repertoire over time. These insights in the maintenance of the cellular response against mumps may provide hallmarks for optimizing vaccination strategies towards a long-term cellular memory response.

16.
PLoS Pathog ; 17(12): e1010152, 2021 12.
Article in English | MEDLINE | ID: mdl-34914799

ABSTRACT

Cytomegalovirus (CMV) infection has a major impact on the T-cell pool, which is thought to be associated with ageing of the immune system. The effect on the T-cell pool has been interpreted as an effect of CMV on non-CMV specific T-cells. However, it remains unclear whether the effect of CMV could simply be explained by the presence of large, immunodominant, CMV-specific memory CD8+ T-cell populations. These have been suggested to establish through gradual accumulation of long-lived cells. However, little is known about their maintenance. We investigated the effect of CMV infection on T-cell dynamics in healthy older adults, and aimed to unravel the mechanisms of maintenance of large numbers of CMV-specific CD8+ T-cells. We studied the expression of senescence, proliferation, and apoptosis markers and quantified the in vivo dynamics of CMV-specific and other memory T-cell populations using in vivo deuterium labelling. Increased expression of late-stage differentiation markers by CD8+ T-cells of CMV+ versus CMV- individuals was not solely explained by the presence of large, immunodominant CMV-specific CD8+ T-cell populations. The lifespans of circulating CMV-specific CD8+ T-cells did not differ significantly from those of bulk memory CD8+ T-cells, and the lifespans of bulk memory CD8+ T-cells did not differ significantly between CMV- and CMV+ individuals. Memory CD4+ T-cells of CMV+ individuals showed increased expression of late-stage differentiation markers and decreased Ki-67 expression. Overall, the expression of senescence markers on T-cell populations correlated positively with their expected in vivo lifespan. Together, this work suggests that i) large, immunodominant CMV-specific CD8+ T-cell populations do not explain the phenotypical differences between CMV+ and CMV- individuals, ii) CMV infection hardly affects the dynamics of the T-cell pool, and iii) large numbers of CMV-specific CD8+ T-cells are not due to longer lifespans of these cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Immunologic Memory/immunology , Latent Infection/immunology , Aged , Cytomegalovirus Infections/virology , Female , Humans , Latent Infection/virology , Male , Middle Aged
17.
Front Immunol ; 12: 663664, 2021.
Article in English | MEDLINE | ID: mdl-34025665

ABSTRACT

Latent infection with cytomegalovirus (CMV) is assumed to contribute to the age-associated decline of the immune system. CMV induces large changes in the T-cell pool and may thereby affect other immune responses. CMV is expected to impact especially older adults, who are already at higher risk of severe disease and hospitalization upon infections such as influenza virus (IAV) infection. Here, we investigated the impact of CMV infection on IAV-specific CD8+ T-cell frequencies in healthy individuals (n=96) and the response to IAV infection in older adults (n=72). IAV-specific memory T-cell frequencies were lower in healthy CMV+ older individuals compared to healthy CMV- older individuals. Upon acute IAV infection, CMV serostatus or CMV-specific antibody levels were not negatively associated with IAV-specific T-cell frequencies, function, phenotype or T-cell receptor repertoire diversity. This suggests that specific T-cell responses upon acute IAV infection are not negatively affected by CMV. In addition, we found neither an association between CMV infection and inflammatory cytokine levels in serum during acute IAV infection nor between cytokine levels and the height of the IAV-specific T-cell response upon infection. Finally, CMV infection was not associated with increased severity of influenza-related symptoms. In fact, CMV infection was even associated with increased IAV-specific T-cell responses early upon acute IAV infection. In conclusion, although associated with lower frequencies of memory IAV-specific T cells in healthy individuals, CMV infection does not seem to hamper the induction of a proper T-cell response during acute IAV infection in older adults.


Subject(s)
Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Immunologic Memory , Influenza A virus/immunology , Influenza, Human/immunology , T-Lymphocytes/immunology , Virus Latency/immunology , Adult , Aged , Aged, 80 and over , Cellular Senescence/immunology , Coinfection , Cytokines/blood , Cytokines/metabolism , Cytomegalovirus Infections/metabolism , Female , Humans , Influenza, Human/diagnosis , Influenza, Human/virology , Male , Middle Aged , Severity of Illness Index , T-Cell Antigen Receptor Specificity , T-Lymphocytes/metabolism , Young Adult
18.
Front Aging ; 2: 665637, 2021.
Article in English | MEDLINE | ID: mdl-35822032

ABSTRACT

CD8+ T cells play an important role in protection against viral infections. With age, changes in the T-cell pool occur, leading to diminished responses against both new and recurring infections in older adults. This is thought to be due to a decrease in both T-cell numbers and T-cell receptor (TCR) diversity. Latent infection with cytomegalovirus (CMV) is assumed to contribute to this age-associated decline of the immune system. The observation that the level of TCR diversity in the total memory T-cell pool stays relatively stable during aging is remarkable in light of the constant input of new antigen-specific memory T cells. What happens with the diversity of the individual antigen-specific T-cell repertoires in the memory pool remains largely unknown. Here we studied the effect of aging on the phenotype and repertoire diversity of CMV-specific and Epstein-Barr virus (EBV)-specific CD8+ T cells, as well as the separate effects of aging and CMV-infection on the EBV-specific T-cell repertoire. Antigen-specific T cells against both persistent viruses showed an age-related increase in the expression of markers associated with a more differentiated phenotype, including KLRG-1, an increase in the fraction of terminally differentiated T cells, and a decrease in the diversity of the T-cell repertoire. Not only age, but also CMV infection was associated with a decreased diversity of the EBV-specific T-cell repertoire. This suggests that both CMV infection and age can impact the T-cell repertoire against other antigens.

19.
Aging Cell ; 19(11): e13262, 2020 11.
Article in English | MEDLINE | ID: mdl-33078890

ABSTRACT

Older adults often show signs of impaired CD8+ T-cell immunity, reflected by weaker responses against new infections and vaccinations, and decreased protection against reinfection. This immune impairment is in part thought to be the consequence of a decrease in both T-cell numbers and repertoire diversity. If this is indeed the case, a strategy to prevent infectious diseases in older adults could be the induction of protective memory responses through vaccination at a younger age. However, this requires that the induced immune responses are maintained until old age. It is therefore important to obtain insights into the long-term maintenance of the antigen-specific T-cell repertoire. Here, we review the literature on the maintenance of antigen-experienced CD8+ T-cell repertoires against acute and chronic infections. We describe the complex interactions that play a role in shaping the memory T-cell repertoire, and the effects of age, infection history, and T-cell avidity. We discuss the implications of these findings for the development of new vaccination strategies to protect older adults.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Vaccination/methods , Age Factors , Aged , Humans
20.
Sci Rep ; 10(1): 15866, 2020 09 28.
Article in English | MEDLINE | ID: mdl-32985522

ABSTRACT

HIV-1 cell entry is mediated by binding to the CD4-receptor and chemokine co-receptors CCR5 (R5) or CXCR4 (X4). R5-tropic viruses are predominantly detected during early infection. A switch to X4-tropism often occurs during the course of infection. X4-tropism switching is strongly associated with accelerated disease progression and jeopardizes CCR5-based HIV-1 cure strategies. It is unclear whether host immunological factors play a causative role in tropism switching. We investigated the relationship between immunological factors and X4-tropism in a cross-sectional study in HIV-1 subtype C (HIV-1C)-infected patients and in a longitudinal HIV-1 subtype B (HIV-1B) seroconverter cohort. Principal component analysis identified a cluster of immunological markers (%HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD4+ T-cells, %CD38+HLA-DR+ CD8+ T-cells, %CD70+ CD4+ T-cells, %CD169+ monocytes, and absolute CD4+ T-cell count) in HIV-1C patients that was independently associated with X4-tropism (aOR 1.044, 95% CI 1.003-1.087, p = 0.0392). Analysis of individual cluster contributors revealed strong correlations of two markers of T-cell activation (%HLA-DR+ CD4+ T-cells, %HLA-DR+CD38+ CD4+ T-cells) with X4-tropism, both in HIV-1C patients (p = 0.01;p = 0.03) and HIV-1B patients (p = 0.0003;p = 0.0001). Follow-up data from HIV-1B patients subsequently revealed that T-cell activation precedes and independently predicts X4-tropism switching (aHR 1.186, 95% CI 1.065-1.321, p = 0.002), providing novel insights into HIV-1 pathogenesis and CCR5-based curative strategies.


Subject(s)
HIV Infections/immunology , HIV Infections/metabolism , HIV-1/physiology , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Viral Tropism , Adult , Cross-Sectional Studies , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...