Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Rev Sci Instrum ; 93(11): 115109, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461546

ABSTRACT

The scope of this paper is to outline the main marks and performances of the MagneDyn beamline, which was designed and built to perform ultrafast magnetodynamic studies in solids. Open to users since 2019, MagneDyn operates with variable circular and linear polarized femtosecond pulses delivered by the externally laser-seeded FERMI free-electron laser (FEL). The very high degree of polarization, the high pulse-to-pulse stability, and the photon energy tunability in the 50-300 eV range allow performing advanced time-resolved magnetic dichroic experiments at the K-edge of light elements, e.g., carbon and at the M- and N-edge of the 3d-transition-metals and rare earth elements, respectively. To this end, two experimental end-stations are available. The first is equipped with an in situ dedicated electromagnet, a cryostat, and an extreme ultraviolet Wollaston-like polarimeter. The second, designed for carry-in user instruments, hosts also a spectrometer for pump-probe resonant x-ray emission and inelastic spectroscopy experiments with a sub-eV energy resolution. A Kirkpatrick-Baez active optics system provides a minimum focus of ∼20×20µm2 FWHM at the sample. A pump laser setup, synchronized with the FEL-laser seeding system, delivers sub-picosecond pulses with photon energies ranging from the mid-IR to near-UV for optical pump-FEL probe experiments with a minimal pump-probe jitter of few femtoseconds. The overall combination of these features renders MagneDyn a unique state-of-the-art tool for studying ultrafast magnetic and resonant emission phenomena in solids.

2.
Analyst ; 146(19): 5836-5842, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34378555

ABSTRACT

Soft X-ray microscopy coupled with low energy X-ray fluorescence is a powerful tool for investigating complex biological systems like cells and tissues. Due to certain characteristics of X-ray sources, sample stage motors, and detectors, the examination of large areas at high resolutions is very time consuming, often confining the analysis only to a restricted number of pre-selected representative regions. Here we propose and demonstrate a compressive sensing method that provides an alternative approach for overcoming such limitations and can be applied to different kinds of samples and other microscopy and analytical techniques.


Subject(s)
Microscopy , Radiography , Radionuclide Imaging , X-Rays
3.
Sci Rep ; 10(1): 9990, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32561797

ABSTRACT

X-Ray Fluorescence (XRF) scanning is a widespread technique of high importance and impact since it provides chemical composition maps crucial for several scientific investigations. There are continuous requirements for larger, faster and highly resolved acquisitions in order to study complex structures. Among the scientific applications that benefit from it, some of them, such as wide scale brain imaging, are prohibitively difficult due to time constraints. However, typically the overall XRF imaging performance is improving through technological progress on XRF detectors and X-ray sources. This paper suggests an additional approach where XRF scanning is performed in a sparse way by skipping specific points or by varying dynamically acquisition time or other scan settings in a conditional manner. This paves the way for Compressive Sensing in XRF scans where data are acquired in a reduced manner allowing for challenging experiments, currently not feasible with the traditional scanning strategies. A series of different compressive sensing strategies for dynamic scans are presented here. A proof of principle experiment was performed at the TwinMic beamline of Elettra synchrotron. The outcome demonstrates the potential of Compressive Sensing for dynamic scans, suggesting its use in challenging scientific experiments while proposing a technical solution for beamline acquisition software.

4.
Nat Commun ; 11(1): 883, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-32060288

ABSTRACT

The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.

5.
Nature ; 578(7795): 386-391, 2020 02.
Article in English | MEDLINE | ID: mdl-32042171

ABSTRACT

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1-3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4-7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14-16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.

6.
J Synchrotron Radiat ; 23(1): 132-40, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26698055

ABSTRACT

The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs-nm time-length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses.

7.
J Synchrotron Radiat ; 22(3): 553-64, 2015 May.
Article in English | MEDLINE | ID: mdl-25931068

ABSTRACT

The Elastic and Inelastic Scattering (EIS) beamline at the free-electron laser FERMI is presented. It consists of two separate end-stations: EIS-TIMEX, dedicated to ultrafast time-resolved studies of matter under extreme and metastable conditions, and EIS-TIMER, dedicated to time-resolved spectroscopy of mesoscopic dynamics in condensed matter. The scientific objectives are discussed and the instrument layout illustrated, together with the results from first exemplifying experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...