Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Article in English | MEDLINE | ID: mdl-35091472

ABSTRACT

Microbes have been coevolving with their host for millions of years, exploiting host resources to their own benefit. We show that viral and bacterial pathogens convergently evolved to hijack cellular mitogen-activated protein kinase (MAPK) p90-ribosomal S6-kinases (RSKs). Theiler's virus leader (L) protein binds RSKs and prevents their dephosphorylation, thus maintaining the kinases active. Recruitment of RSKs enables L-protein-mediated inhibition of eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2 or PKR) and stress granule formation. Strikingly, ORF45 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) and YopM protein of Yersinia use the same peptide motif as L to recruit and activate RSKs. All three proteins interact with a conserved surface-located loop of RSKs, likely acting as an allosteric regulation site. Some unrelated viruses and bacteria thus evolved to harness RSKs in a common fashion, yet to target distinct aspects of innate immunity. As documented for Varicella zoster virus ORF11, additional pathogens likely evolved to hijack RSKs, using a similar short linear motif.


Subject(s)
Host Microbial Interactions/physiology , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Bacteria/pathogenicity , Bacterial Infections/genetics , Bacterial Infections/metabolism , Biological Evolution , Cell Line , Gene Expression Regulation, Viral/genetics , Host Microbial Interactions/genetics , Humans , Immediate-Early Proteins/genetics , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism , Virus Replication/physiology , Viruses/pathogenicity
2.
Sci Rep ; 11(1): 9188, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911136

ABSTRACT

Eukaryotic translation initiation factor 2 alpha kinase 2 (EIF2AK2), better known as PKR, plays a key role in the response to viral infections and cellular homeostasis by regulating mRNA translation. Upon binding dsRNA, PKR is activated through homodimerization and subsequent autophosphorylation on residues Thr446 and Thr451. In this study, we identified a novel PKR phosphorylation site, Ser6, located 3 amino acids upstream of the first double-stranded RNA binding motif (DRBM1). Another Ser residue occurs in PKR at position 97, the very same position relative to the DRBM2. Ser or Thr residues also occur 3 amino acids upstream DRBMs of other proteins such as ADAR1 or DICER. Phosphoinhibiting mutations (Ser-to-Ala) introduced at Ser6 and Ser97 spontaneously activated PKR. In contrast, phosphomimetic mutations (Ser-to-Asp) inhibited PKR activation following either poly (I:C) transfection or virus infection. These mutations moderately affected dsRNA binding or dimerization, suggesting a model where negative charges occurring at position 6 and 97 tighten the interaction of DRBMs with the kinase domain, thus keeping PKR in an inactive closed conformation even in the presence of dsRNA. This study provides new insights on PKR regulation mechanisms and identifies Ser6 and Ser97 as potential targets to modulate PKR activity for therapeutic purposes.


Subject(s)
Double-Stranded RNA Binding Motif , Serine/genetics , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism , Alanine/genetics , Amino Acid Substitution , Cardiovirus Infections/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Mutation , Phosphorylation , Protein Multimerization , RNA-Binding Proteins/metabolism , Serine/chemistry , Theilovirus/pathogenicity
3.
J Virol ; 93(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31292248

ABSTRACT

Leader (L) proteins encoded by cardioviruses are multifunctional proteins that contribute to innate immunity evasion. L proteins of Theiler's murine encephalomyelitis virus (TMEV), Saffold virus (SAFV), and encephalomyocarditis virus (EMCV) were reported to inhibit stress granule assembly in infected cells. Here, we show that TMEV L can act at two levels in the stress granule formation pathway: on the one hand, it can inhibit sodium arsenite-induced stress granule assembly without preventing eIF2α phosphorylation and, thus, acts downstream of eIF2α; on the other hand, it can inhibit eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation and the consequent PKR-mediated eIF2α phosphorylation. Interestingly, coimmunostaining experiments revealed that PKR colocalizes with viral double-stranded RNA (dsRNA) in cells infected with L-mutant viruses but not in cells infected with the wild-type virus. Furthermore, PKR coprecipitated with dsRNA from cells infected with L-mutant viruses significantly more than from cells infected with the wild-type virus. These data strongly suggest that L blocks PKR activation by preventing the interaction between PKR and viral dsRNA. In infected cells, L also rendered PKR refractory to subsequent activation by poly(I·C). However, no interaction was observed between L and either dsRNA or PKR. Taken together, our results suggest that, unlike other viral proteins, L indirectly acts on PKR to negatively regulate its responsiveness to dsRNA.IMPORTANCE The leader (L) protein encoded by cardioviruses is a very short multifunctional protein that contributes to evasion of the host innate immune response. This protein notably prevents the formation of stress granules in infected cells. Using Theiler's virus as a model, we show that L proteins can act at two levels in the stress response pathway leading to stress granule formation, the most striking one being the inhibition of eucaryotic translation initiation factor 2 alpha kinase 2 (PKR) activation. Interestingly, the leader protein appears to inhibit PKR via a novel mechanism by rendering this kinase unable to detect double-stranded RNA, its typical activator. Unlike other viral proteins, such as influenza virus NS1, the leader protein appears to interact with neither PKR nor double-stranded RNA, suggesting that it acts indirectly to trigger the inhibition of the kinase.


Subject(s)
Enzyme Activation , Host-Pathogen Interactions , Immune Evasion , Theilovirus/physiology , Viral Proteins/metabolism , eIF-2 Kinase/antagonists & inhibitors , Animals , Cell Line , Humans , Protein Binding , RNA, Double-Stranded/metabolism , RNA, Viral/metabolism
4.
J Virol ; 85(18): 9614-22, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21752908

ABSTRACT

Stress granules (SG) are cytoplasmic aggregates of stalled translation preinitiation complexes that form in cells exposed to various environmental stresses. Here, we show that stress granules assemble in cells infected with Theiler's murine encephalomyelitis virus (TMEV) mutants carrying alterations in the leader (L) protein, but not in cells infected with wild-type TMEV. Stress granules also formed in STAT1-deficient cells, suggesting that SG formation was not a consequence of increased type I interferon (IFN) production when cells were infected with the mutant virus. Ectopic expression of the wild-type L protein was sufficient to inhibit stress granule formation induced by sodium arsenite or thapsigargin treatment. In conclusion, TMEV infection induces stress granule assembly, but this process is inhibited by the L protein. Unlike poliovirus-induced stress granules, TMEV-induced stress granules did not contain the nuclear protein Sam68 but contained polypyrimidine tract binding protein (PTB), an internal ribosome entry site (IRES)-interacting protein. Moreover, G3BP was not degraded and was found in SG after TMEV infection, suggesting that SG content could be virus specific. Despite the colocalization of PTB with SG and the known interaction of PTB with viral RNA, in situ hybridization and immunofluorescence assays failed to detect viral RNA trapped in infection-induced SG. Recombinant Theiler's viruses expressing the L protein of Saffold virus 2 (SAFV-2), a closely related human theilovirus, or the L protein of mengovirus, an encephalomyocarditis virus (EMCV) strain, also inhibited infection-induced stress granule assembly, suggesting that stress granule antagonism is a common feature of cardiovirus L proteins.


Subject(s)
Cytoplasmic Granules/metabolism , Theilovirus/pathogenicity , Viral Matrix Proteins/metabolism , Animals , Cell Line , Humans , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Viral Matrix Proteins/genetics
5.
J Virol ; 83(21): 11223-32, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19710133

ABSTRACT

The leader protein of cardioviruses, Theiler's murine encephalomyelitis virus (TMEV) and encephalomyocarditis virus (EMCV), is a multifunctional protein known to antagonize type I interferon expression and to interfere with nucleocytoplasmic trafficking of host proteins and mRNA. This protein plays an important role in the capacity of TMEV to establish persistent infection of the central nervous system. Mutant forms of the TMEV leader protein were generated by random mutagenesis and selected after retroviral transduction on the basis of the loss of the highly toxic nature of this protein. Selected mutations define a short C-terminal domain of the leader conserved in TMEV and Saffold virus but lacking in the EMCV leader and thus called the Theilo domain. Mutations in this domain had a dramatic impact on TMEV L protein activity. Like the zinc finger mutation, Theilo domain mutations affected all of the activities of the L protein tested: interferon gene transcription and IRF-3 dimerization antagonism, alteration of nucleocytoplasmic trafficking, nucleoporin 98 hyperphosphorylation, and viral persistence in vivo. This suggests that the Zn finger and the Theilo domain of the protein cooperate for function. Moreover, the fact that all of the activities tested were affected by these mutations suggests that the various leader protein functions are somehow coupled.


Subject(s)
Active Transport, Cell Nucleus/physiology , Cytokines/genetics , Gene Expression Regulation , Theilovirus/genetics , Viral Proteins/genetics , Amino Acid Sequence , Animals , Cardiovirus Infections/genetics , Cardiovirus Infections/virology , Cell Line , Cytokines/metabolism , Molecular Sequence Data , Mutagenesis , Protein Structure, Tertiary , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Theilovirus/metabolism , Viral Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...