Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Planta Med ; 84(3): 191-200, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28926862

ABSTRACT

Mikania glomerata and Mikania laevigata are medicinal plants popularly used in Brazil for colds and asthma. Although several studies report differences in their composition, they are frequently used indistinctly, which may be due to misidentification of the species or the plant part used. Herein, the chemical, anatomical, and morphological profiles of both species were evaluated, seeking to differentiate them. Due to the pattern of secondary metabolites found in M. glomerata and M. laevigata, the chemical profile of the leaves was the characteristic that best differentiated the two species. Coumarin was present in all the leaf samples of M. laevigata but absent or in low concentration in leaf samples of M. glomerata. The stems presented coumarin in both species, albeit in different concentrations. The quantification of chlorogenic and dicaffeoylquinic acids was crucial for the separation of the two species, as higher concentrations are found in M. glomerata. The anatomic structure of the leaves, stem, and petioles of both species was conserved, even when exposed to different environments, but presented only subtle differences between species. The morphology of the leaves presented different characteristics for each species but altered when exposed to shade. Therefore, the chemical analysis together with the morphological characteristics of plants grown in full sunlight may be used for the correct identification of these species.


Subject(s)
Mikania/classification , Mikania/anatomy & histology , Mikania/chemistry , Mikania/ultrastructure , Plants, Medicinal/anatomy & histology , Plants, Medicinal/chemistry , Plants, Medicinal/classification , Plants, Medicinal/ultrastructure , Species Specificity
2.
ScientificWorldJournal ; 2014: 439461, 2014.
Article in English | MEDLINE | ID: mdl-25379532

ABSTRACT

This study aims at determining the Minimum Inhibitory Concentration with Escherichia coli ATCC 25922 and cytotoxicity to L929 cells (ATCC CCL-1) of the waste generated by doxycycline degradation by the Fenton process. This process has shown promise in this treatment thanks mainly to the fact that the waste did not show any relevant inhibitory effect on the test organism and no cytotoxicity to L-929 cells, thus demonstrating that the antibiotic properties were inactivated.


Subject(s)
Anti-Bacterial Agents/chemistry , Doxycycline/chemistry , Hydrogen Peroxide/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Animals , Anti-Bacterial Agents/toxicity , Cell Line , Cell Survival/drug effects , Doxycycline/toxicity , Escherichia coli/drug effects , Escherichia coli/growth & development , Fibroblasts/drug effects , Humans , Mice , Microbial Sensitivity Tests , Waste Disposal, Fluid , Water Pollutants, Chemical/toxicity
3.
Braz. j. pharm. sci ; 50(1): 25-40, Jan-Mar/2014. tab, graf
Article in English | LILACS | ID: lil-709538

ABSTRACT

The frequent occurrence of pharmaceuticals in the aquatic environment requires an assessment of their environmental impact and their negative effects in humans. Among the drugs with high harmful potential to the environment are the antibiotics that reach the environment not only, as may be expected, through the effluents from chemical and pharmaceutical industries, but mainly through the sewage and livestock; because around 25 to 75% of the ingested drugs are excreted in unchanged form after the passage through the Gastro-Intestinal Tract. Tetracycline has high world consumption, representing a human consumption of about 23 kg/day in Brazil in 2007. At the moment, researches are being made to develop new tetracycline that incorporate heavy metals (Hg, Cd, Re, Pt, Pd) to their structures in order to increase their bactericidal effect. The conventional wastewater treatment plants are not able to degrade complex organic molecules to reduce their toxicity and improve their biodegradability. For this reason new technologies, i.e., the advanced oxidation processes, are being developed to handle this demand. The objectives of this study are to review the literature on the processes of obtaining tetracycline, presenting its waste treatment methods and evaluation of their environmental impact.


A ocorrência frequente de fármacos no meio aquático exige a avaliação do seu impacto ambiental e seus efeitos negativos em seres humanos. Dentre os fármacos com maior potencial de impacto ambiental estão os antibióticos, que chegam ao meio ambiente através dos efluentes de indústrias químico-farmacêuticas e, principalmente, através de esgotos domésticos e criação de animais, visto que 25% a 75% dos fármacos são excretados em forma inalterada após passagem pelo Trato Gastrointestinal. Parcela significativa do consumo mundial dos antibióticos corresponde à classe das tetraciclinas, representando consumo humano de 23 kg/dia no Brasil, em 2007. Atualmente, há pesquisas de novas tetraciclinas que incorporam metais pesados (Hg, Cd, Re, Pt, Pd) às suas estruturas com o intuito de aumentar suas atividades bactericidas. As estações de tratamento de águas residuais convencionais não são capazes de degradar moléculas orgânicas complexas, diminuir a sua toxicidade e melhorar a sua biodegradabilidade. Por esta razão, as novas tecnologias, como, por exemplo, os processos oxidativos avançados, estão sendo desenvolvidos para lidar com esta demanda. Os objetivos deste trabalho são fazer uma revisão da literatura sobre os processos de obtenção de tetraciclinas, apresentar métodos de tratamento de seus resíduos e avaliar o seu impacto ambiental.


Subject(s)
Humans , Tetracyclines/analysis , /analysis , /analysis , Industrial Effluents/prevention & control , Environmental Pollution/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...