Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
JCI Insight ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916963

ABSTRACT

Despite epidermal turnover, the skin is host to a complex array of microbes including viruses, such as the human papillomavirus (HPV), which must infect and manipulate skin keratinocyte stem cells (KSC) to survive. This crosstalk between the virome and KSC populations remains largely unknown. Here, we investigated the effect of HPV8 on KSCs using various mouse models. We observed that the HPV8 early region gene E6 specifically caused Lrig1+ hair follicle junctional zone KSC proliferation and expansion, which would facilitate viral transmission. Within Lrig1+ KSCs specifically, HPV8 E6 bound intracellular p300 to phosphorylate the STAT3 transcriptional regulatory node. This induces ΔNp63 expression, resulting in KSC expansion into the overlying epidermis. HPV8 was associated with 70% of human actinic keratoses (AK). Together these results define the "hit and run" mechanism for HPV8 in human actinic keratosis as an expansion of KSCs, which lacks melanosome protection and is thus susceptible to sun-light-induced malignant transformation.

2.
J Med Virol ; 96(6): e29710, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804187

ABSTRACT

Kidney transplant recipients (KTRs), like other solid organ transplant recipients display a suboptimal response to mRNA vaccines, with only about half achieving seroconversion after two doses. However, the effectiveness of a booster dose, particularly in generating neutralizing antibodies (NAbs), remains poorly understood, as most studies have mainly focused on non-neutralizing antibodies. Here, we have longitudinally assessed the humoral response to the SARS-CoV-2 mRNA vaccine in 40 KTRs over a year, examining changes in both anti-spike IgG and NAbs following a booster dose administered about 5 months post-second dose. We found a significant humoral response increase 5 months post-booster, a stark contrast to the attenuated response observed after the second dose. Of note, nearly a quarter of participants did not achieve protective plasma levels even after the booster dose. We also found that the higher estimated glomerular filtration rate (eGFR) correlated with a more robust humoral response postvaccination. Altogether, these findings underscore the effectiveness of the booster dose in enhancing durable humoral immunity in KTRs, as evidenced by the protective level of NAbs found in 65% of the patients 5 months post- booster, especially those with higher eGFR rates.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Immunization, Secondary , Kidney Transplantation , SARS-CoV-2 , Transplant Recipients , Humans , Kidney Transplantation/adverse effects , Male , Antibodies, Viral/blood , Female , Middle Aged , Antibodies, Neutralizing/blood , COVID-19/prevention & control , COVID-19/immunology , Prospective Studies , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , Adult , Immunoglobulin G/blood , Monitoring, Immunologic/methods , mRNA Vaccines , Spike Glycoprotein, Coronavirus/immunology , Longitudinal Studies
3.
Microbiol Spectr ; 11(6): e0255523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37982633

ABSTRACT

IMPORTANCE: Real-time quantitative PCR (RT-qPCR) on nasopharyngeal swabs (NPS) has been used as the standard method for detecting and monitoring SARS-CoV-2 infection during the pandemic. However, NPS collection often causes discomfort and poses a higher risk of transmission to health care workers (HCW). Furthermore, RT-qPCR only provides relative quantification and does not allow distinguishing those samples with residual, no longer active infection, whereas droplet digital PCR (ddPCR) allows for precise quantification of viral load, offering greater sensitivity and reproducibility. This study highlights the effectiveness of using self-collected saliva as a convenient and reliable sampling method. By utilizing ddPCR to measure the SARS-CoV-2 viral load in saliva samples, individuals with low or undetectable viral loads can be quickly identified. This approach is particularly advantageous for surveillance programs targeting HCW, as it enables the early identification and release of uninfected personnel, minimizing lost workdays. Additionally, analyzing viral load in saliva samples by ddPCR is valuable in determining virus shedding duration across different SARS-CoV-2 variants, informing transmission and disease control. Finally, testing saliva could overcome the detection of historic cases due to prolonged RNA swabbing past-infection and the unnecessary exclusion of those individuals from the workplace.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Breakthrough Infections , COVID-19/diagnosis , Reproducibility of Results , Saliva , Viral Load , Health Personnel , Real-Time Polymerase Chain Reaction
4.
Br J Cancer ; 129(11): 1863-1874, 2023 11.
Article in English | MEDLINE | ID: mdl-37838812

ABSTRACT

BACKGROUND: Our aim was to evaluate the efficacy and anti-cancer action of a precision medicine approach involving a novel SIRT1-dependent pathway that, when disrupted, leads to the restoration of a functional p53 in human papillomavirus (HPV)-transformed cells. METHODS: The anticancer potential of inhibiting SIRT1 was evaluated by examining the effects of the specific SIRT1 inhibitor EX527 (also known as Selisistat) or genetic silencing, either individually or in conjunction with standard chemotherapeutic agents, on a range of HPV+ cancer cells and a preclinical mouse model of HPV16-induced cancer. RESULTS: We show that SIRT1 inhibition restores a transcriptionally active K382-acetylated p53 in HPV+ but not HPV- cell lines, which in turn promotes G0/G1 cell cycle arrest and inhibits clonogenicity specifically in HPV+ cells. Additionally, EX527 treatment increases the sensitivity of HPV+ cells to sublethal doses of standard genotoxic agents. The enhanced sensitivity to cisplatin as well as p53 restoration were also observed in an in vivo tumorigenicity assay using syngeneic C3.43 cells harbouring an integrated HPV16 genome, injected subcutaneously into C57BL/6J mice. CONCLUSIONS: Our findings uncover an essential role of SIRT1 in HPV-driven oncogenesis, which may have direct translational implications for the treatment of this type of cancer.


Subject(s)
Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Human Papillomavirus Viruses , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Sirtuin 1/genetics , Sirtuin 1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Mice, Inbred C57BL , Oncogene Proteins, Viral/genetics , Apoptosis
5.
Cancer Immunol Immunother ; 72(9): 3097-3110, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37356050

ABSTRACT

Although the activation of innate immunity to treat a wide variety of cancers is gaining increasing attention, it has been poorly investigated in human papillomavirus (HPV)-associated malignancies. Because these tumors harbor a severely impaired cGAS-STING axis, but they still retain a largely functional RIG-I pathway, another critical mediator of adaptive and innate immune responses, we asked whether RIG-I activation by the 5'ppp-RNA RIG-I agonist M8 would represent a therapeutically viable option to treat HPV+ cancers. Here, we show that M8 transfection of two cervical carcinoma-derived cell lines, CaSki and HeLa, both expressing a functional RIG-I, triggers intrinsic apoptotic cell death, which is significantly reduced in RIG-I KO cells. We also demonstrate that M8 stimulation potentiates cisplatin-mediated cell killing of HPV+ cells in a RIG-I dependent manner. This combination treatment is equally effective in reducing tumor growth in a syngeneic pre-clinical mouse model of HPV16-driven cancer, where enhanced expression of lymphocyte-recruiting chemokines and cytokines correlated with an increased number of activated natural killer (NK) cells in the tumor microenvironment. Consistent with a role of RIG-I signaling in immunogenic cell killing, stimulation of NK cells with conditioned medium from M8-transfected CaSki boosted NK cell proliferation, activation, and migration in a RIG-I-dependent tumor cell-intrinsic manner. Given the highly conserved molecular mechanisms of carcinogenesis and genomic features of HPV-driven cancers and the remarkably improved prognosis for HPV+ oropharyngeal cancer, targeting RIG-I may represent an effective immunotherapeutic strategy in this setting, favoring the development of de-escalating strategies.


Subject(s)
Neoplasms , Papillomavirus Infections , Female , Humans , Animals , Mice , Human Papillomavirus Viruses , Cisplatin/pharmacology , Papillomavirus Infections/complications , Apoptosis , Killer Cells, Natural
6.
J Invest Dermatol ; 143(5): 740-750.e4, 2023 05.
Article in English | MEDLINE | ID: mdl-36481357

ABSTRACT

Human papillomaviruses (HPVs) from the beta genus are commensal viruses of the skin usually associated with asymptomatic infection in the general population. However, in individuals with specific genetic backgrounds, such as patients with epidermodysplasia verruciformis, or those with immune defects, such as organ transplant recipients, they are functionally involved in sunlight-induced skin cancer development, mainly keratinocyte carcinoma. Despite their well-established protumorigenic role, the cooperation between ß-HPV infection, impaired host immunosurveillance, and UVB exposure has never been formally shown in animal models. In this study, by crossing skin-specific HPV8-transgenic mice with Rag2-deficient mice, we have generated a preclinical mouse model, named Rag2‒/‒:K14-HPV8. These mice display an unhealthy skin phenotype and spontaneously develop papilloma-like lesions spreading to the entire skin much more rapidly compared with Rag2+/+:K14-HPV8 mice. Exposure to low doses of UVB radiation is sufficient to trigger severe skin inflammation in Rag2‒/‒:K14-HPV8 but not in Rag2+/+:K14-HPV8 mice. Their inflamed skin very much resembled that observed in cutaneous field cancerization in organ transplant recipients, showing high levels of UVB-damaged cells, enhanced production of proinflammatory cytokines, and mast cell recruitment to the dermis. Overall, this immunocompromised HPV8-transgenic mouse model shows that the coexistence of immune defects, ß-HPV, and UVB exposure promotes skin cancer development.


Subject(s)
Papillomavirus Infections , Skin Neoplasms , Humans , Mice , Animals , Mice, Transgenic , Human Papillomavirus Viruses , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin/pathology , Carcinogenesis/pathology , Papillomaviridae/genetics , Papillomavirus Infections/complications
7.
J Invest Dermatol ; 143(6): 965-976.e15, 2023 06.
Article in English | MEDLINE | ID: mdl-36572089

ABSTRACT

The tumor microenvironment is a complex niche enveloping a tumor formed by extracellular matrix, blood vessels, immune cells, and fibroblasts constantly interacting with cancer cells. Although tumor microenvironment is increasingly recognized as a major player in cancer initiation and progression in many tumor types, its involvement in Merkel cell carcinoma (MCC) pathogenesis is currently unknown. In this study, we provide a molecular and functional characterization of cancer-associated fibroblasts (CAFs), the major tumor microenvironment component, in patient-derived xenografts of patients with MCC. We show that subcutaneous coinjection of patient-derived CAFs and human MCC MKL-1 cells into severe combined immunodeficient mice significantly promotes tumor growth and metastasis. These fast-growing xenografts are characterized by areas densely populated with human CAFs, mainly localized around blood vessels. We provide evidence that the growth-promoting activity of MCC-derived CAFs is mediated by the aminopeptidase A/angiotensin II and III/angiotensin II type 1 receptor axis, with the expression of aminopeptidase A in CAFs being a triggering event. Together, our findings point to aminopeptidase A as a potential marker for MCC prognostic stratification and as a candidate for therapeutic intervention.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Merkel Cell , Skin Neoplasms , Animals , Mice , Humans , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Merkel Cell/pathology , Glutamyl Aminopeptidase/metabolism , Fibroblasts/metabolism , Skin Neoplasms/pathology , Tumor Microenvironment
9.
Blood Cancer J ; 12(1): 8, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35042847

ABSTRACT

Understanding antibody-based SARS-CoV-2 immunity in hematologic malignancy (HM) patients following infection is crucial to inform vaccination strategies for this highly vulnerable population. This cross-sectional study documents the anti-SARS-CoV-2 humoral response and serum neutralizing activity in 189 HM patients recovering from a PCR-confirmed infection. The overall seroconversion rate was 85.7%, with the lowest values in patients with lymphoid malignancies or undergoing chemotherapy. Therapy-naive patients in the "watch and wait" status were more likely to seroconvert and display increased anti-s IgG titers. Enhanced serum neutralizing activity was observed in the following SARS-CoV-2-infected HM patient groups: (i) males; (ii) severe COVID-19; and (iii) "watch and wait" or "complete/partial response". The geometric mean (GeoMean) ID50 neutralization titers in patients analyzed before or after 6 months post-infection were 299.1 and 306.3, respectively, indicating that >50% of the patients in either group had a neutralization titer sufficient to provide 50% protection from symptomatic COVID-19. Altogether, our findings suggest that therapy-naive HM patients mount a far more robust immune response to SARS-CoV-2 infection vs. patients receiving anti-cancer treatment, raising the important question as to whether HM patients should be vaccinated before therapy and/or receive vaccine formats capable of better recapitulating the natural infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antineoplastic Agents/administration & dosage , COVID-19/immunology , Hematologic Neoplasms , Immunity, Humoral , SARS-CoV-2/immunology , Aged , Female , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/immunology , Humans , Male , Middle Aged
10.
Viruses ; 15(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36680121

ABSTRACT

The choice of the best SARS-CoV-2 detection approach is crucial to predict which children with SARS-CoV-2 are at high risk of spreading the virus in order to manage public health measures and policies. In this prospective observational study of 35 children admitted to the Pediatric Emergency Departments of two tertiary hospitals in Northern Italy who tested positive for SARS-CoV-2 by standard RT-PCR in nasopharyngeal swab (NPS), we evaluated their presenting symptoms according to their salivary viral load (SVL) determined by droplet digital PCR (ddPCR). Despite an overall low concordance between SARS-CoV-2 detected by salivary ddPCR and NPS RT-PCR (54.3%), when only patients with nasopharyngeal symptoms were analyzed, the sensitivity of ddPCR in saliva specimens increased to 71.4%, and over half of these patients had high SVL (>105 copies/mL), which was significantly more frequent than in children without nasopharyngeal symptoms (57.1% vs. 14.3%, OR = 8, CI 95% 1.28−50.03, p = 0.03). All asymptomatic children had low SVL values. Our findings support the hypothesis that children with nasopharyngeal symptoms are at higher risk of spreading SARS-CoV-2 due to their high SVL and, conversely, asymptomatic children are unlikely to spread the virus due to their low SVL, regardless of their NPS positivity.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Child , SARS-CoV-2/genetics , COVID-19/diagnosis , Viral Load , Real-Time Polymerase Chain Reaction , Nasopharynx , Saliva , Specimen Handling
11.
Viruses ; 13(11)2021 11 12.
Article in English | MEDLINE | ID: mdl-34835076

ABSTRACT

Longitudinal mapping of antibody-based SARS-CoV-2 immunity is critical for public health control of the pandemic and vaccine development. We performed a longitudinal analysis of the antibody-based immune response in a cohort of 100 COVID-19 individuals who were infected during the first wave of infection in northern Italy. The SARS-CoV-2 humoral response was tested using the COVID-SeroIndex, Kantaro Quantitative SARS-CoV-2 IgG Antibody RUO Kit (R&D Systems, Bio-Techne, Minneapolis, USA) and pseudotype-based neutralizing antibody assay. Using sequential serum samples collected from 100 COVID-19 recovered individuals from northern Italy-mostly with mild disease-at 2 and 10 months after their first positive PCR test, we show that 93% of them seroconverted at 2 months, with a geometric mean (GeoMean) half-maximal neutralization titer (NT50) of 387.9. Among the 35 unvaccinated subjects retested at 10 months, 7 resulted seronegative, with an 80% drop in seropositivity, while 28 showed decreased anti-receptor binding domain (RBD) and anti-spike (S) IgG titers, with a GeoMean NT50 neutralization titer dropping to 163.5. As an NT50 > 100 is known to confer protection from SARS-CoV-2 re-infection, our data show that the neutralizing activity elicited by the natural infection has lasted for at least 10 months in a large fraction of subjects.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/immunology , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Asymptomatic Infections , COVID-19/epidemiology , COVID-19/virology , COVID-19 Serological Testing , Cohort Studies , Female , Humans , Immunity , Immunity, Humoral , Immunoglobulin G/blood , Italy/epidemiology , Longitudinal Studies , Male , Middle Aged , Seroconversion , Vaccine Development
13.
Viruses ; 13(2)2021 02 11.
Article in English | MEDLINE | ID: mdl-33670195

ABSTRACT

A causal link between viral infections and autoimmunity has been studied for a long time and the role of some viruses in the induction or exacerbation of systemic lupus erythematosus (SLE) in genetically predisposed patients has been proved. The strength of the association between different viral agents and SLE is variable. Epstein-Barr virus (EBV), parvovirus B19 (B19V), and human endogenous retroviruses (HERVs) are involved in SLE pathogenesis, whereas other viruses such as Cytomegalovirus (CMV) probably play a less prominent role. However, the mechanisms of viral-host interactions and the impact of viruses on disease course have yet to be elucidated. In addition to classical mechanisms of viral-triggered autoimmunity, such as molecular mimicry and epitope spreading, there has been a growing appreciation of the role of direct activation of innate response by viral nucleic acids and epigenetic modulation of interferon-related immune response. The latter is especially important for HERVs, which may represent the molecular link between environmental triggers and critical immune genes. Virus-specific proteins modulating interaction with the host immune system have been characterized especially for Epstein-Barr virus and explain immune evasion, persistent infection and self-reactive B-cell "immortalization". Knowledge has also been expanding on key viral proteins of B19-V and CMV and their possible association with specific phenotypes such as antiphospholipid syndrome. This progress may pave the way to new therapeutic perspectives, including the use of known or new antiviral drugs, postviral immune response modulation and innate immunity inhibition. We herein describe the state-of-the-art knowledge on the role of viral infections in SLE, with a focus on their mechanisms of action and potential therapeutic targets.


Subject(s)
Cytomegalovirus/immunology , Endogenous Retroviruses/immunology , Herpesvirus 4, Human/immunology , Immunity, Innate/immunology , Lupus Erythematosus, Systemic/immunology , Parvovirus B19, Human/immunology , Antiphospholipid Syndrome/immunology , Antiphospholipid Syndrome/virology , Autoimmunity/immunology , Cytomegalovirus Infections/pathology , Endogenous Retroviruses/physiology , Epstein-Barr Virus Infections/pathology , Herpesvirus 4, Human/physiology , Host-Pathogen Interactions/physiology , Humans , Lupus Erythematosus, Systemic/virology , Parvoviridae Infections/pathology , Parvovirus B19, Human/physiology
14.
Viruses ; 13(1)2021 Jan 03.
Article in English | MEDLINE | ID: mdl-33401589

ABSTRACT

Emerging evidence indicates that reactivation of BK polyomavirus (BKPyV) in the kidney and urothelial tract of kidney transplant recipients (KTRs) may be associated with cancer in these sites. In this retrospective study of a single center cohort of KTRs (n = 1307), 10 clear cell renal cell carcinomas and 5 urinary bladder carcinomas were analyzed from 15 KTRs for the presence of BKPyV infection through immunohistochemistry and fluorescent in situ hybridization (FISH). Three of these patients had already exhibited biopsy-proven polyomavirus-associated nephropathies (PyVAN). Although the presence of BKPyV large-T antigen was evident in the urothelium from a kidney removed soon after PyVAN diagnosis, it was undetectable in all the formalin-fixed and paraffin-embedded (FFPE) blocks obtained from the 10 kidney tumors. By contrast, large-T antigen (LT) labeling of tumor cells was detected in two out of five bladder carcinomas. Lastly, the proportion of BKPyV DNA-FISH-positive bladder carcinoma nuclei was much lower than that of LT-positive cells. Taken together, our findings further strengthen the association between BKPyV reactivation and cancer development in KTRs, especially bladder carcinoma.


Subject(s)
BK Virus , Kidney Neoplasms/virology , Kidney Transplantation/adverse effects , Polyomavirus Infections/virology , Urothelium/virology , Adult , Antigens, Viral, Tumor/analysis , Female , Humans , In Situ Hybridization, Fluorescence , Kidney Neoplasms/pathology , Male , Middle Aged , Retrospective Studies , Transplant Recipients , Urothelium/pathology
15.
J Virol ; 94(4)2020 01 31.
Article in English | MEDLINE | ID: mdl-31776268

ABSTRACT

Subversion of innate immunity by oncoviruses, such as human papillomavirus (HPV), favors carcinogenesis because the mechanism(s) of viral immune evasion can also hamper cancer immunosurveillance. Previously, we demonstrated that high-risk (hr) HPVs trigger simultaneous epigenetic silencing of multiple effectors of innate immunity to promote viral persistence. Here, we expand on those observations and show that the HPV E7 oncoprotein upregulates the H3K9-specific methyltransferase, whose action shuts down the host innate immune response. Specifically, we demonstrate that SUV39H1 contributes to chromatin repression at the promoter regions of the viral nucleic acid sensors RIG-I and cGAS and the adaptor molecule STING in HPV-transformed cells. Inhibition of SUV39H1 leads to transcriptional activation of these genes, especially RIG-I, followed by increased beta interferon (IFN-ß) and IFN-λ1 production after poly(dA·dT) or RIG-I agonist M8 transfection. Collectively, our findings provide new evidence that the E7 oncoprotein plays a central role in dampening host innate immunity and raise the possibility that targeting the downstream effector SUV39H1 or the RIG-I pathway is a viable strategy to treat viral and neoplastic disease.IMPORTANCE High-risk HPVs are major viral human carcinogens responsible for approximately 5% of all human cancers. The growth of HPV-transformed cells depends on the ability of viral oncoproteins to manipulate a variety of cellular circuits, including those involved in innate immunity. Here, we show that one of these strategies relies on E7-mediated transcriptional activation of the chromatin repressor SUV39H1, which then promotes epigenetic silencing of RIG-I, cGAS, and STING genes, thereby shutting down interferon secretion in HPV-transformed cells. Pharmacological or genetic inhibition of SUV39H1 restored the innate response in HPV-transformed cells, mostly through activation of RIG-I signaling. We also show that IFN production upon transfection of poly(dA·dT) or the RIG-I agonist M8 predominantly occurs through RIG-I signaling. Altogether, the reversible nature of the modifications associated with E7-mediated SUV39H1 upregulation provides a rationale for the design of novel anticancer and antiviral therapies targeting these molecules.


Subject(s)
Methyltransferases/metabolism , Papillomaviridae/metabolism , Papillomavirus E7 Proteins/metabolism , Repressor Proteins/metabolism , Cell Line , DEAD Box Protein 58/metabolism , Epigenesis, Genetic/genetics , HEK293 Cells , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immune Evasion/genetics , Immune Evasion/immunology , Immunity, Innate/genetics , Immunity, Innate/immunology , Interferon-beta/metabolism , Keratinocytes/virology , Membrane Proteins/metabolism , Methyltransferases/genetics , Nucleotidyltransferases/metabolism , Oncogene Proteins, Viral/metabolism , Papillomaviridae/pathogenicity , Papillomavirus E7 Proteins/physiology , Papillomavirus Infections/virology , Receptors, Immunologic , Repressor Proteins/genetics , Signal Transduction/genetics , Transcriptional Activation/genetics
16.
J Med Virol ; 91(10): 1896-1900, 2019 10.
Article in English | MEDLINE | ID: mdl-31209897

ABSTRACT

We report a case of primary trichodysplasia spinulosa (TS) infection in a kidney transplant child and describe for the first time the presence of degenerated TS-associated polyomavirus (TSPyV)-infected cells in a TS patient's urine that are morphologically different from BK or JC polyomavirus-infected decoy cells.


Subject(s)
Epithelial Cells/virology , Kidney Transplantation , Polyomavirus Infections/urine , Polyomavirus Infections/virology , Polyomavirus/isolation & purification , Transplant Recipients , Child , Humans , Immunocompromised Host , Male , Polyomavirus/classification
17.
mSphere ; 3(6)2018 12 12.
Article in English | MEDLINE | ID: mdl-30541782

ABSTRACT

Several immunodeficiencies are associated with high susceptibility to persistent and progressive human papillomavirus (HPV) infection leading to a wide range of cutaneous and mucosal lesions. However, the HPV types most commonly associated with such clinical manifestations in these patients have not been systematically defined. Here, we used virion enrichment, rolling circle amplification, and deep sequencing to identify circular DNA viruses present in skin swabs and/or wart biopsy samples from 48 patients with rare genetic immunodeficiencies, including patients with warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome, or epidermodysplasia verruciformis (EV). Their profiles were compared with the profiles of swabs from 14 healthy adults and warts from 6 immunologically normal children. Individual patients were typically infected with multiple HPV types; up to 26 different types were isolated from a single patient (multiple anatomical sites, one time point). Among these, we identified the complete genomes of 83 previously unknown HPV types and 35 incomplete genomes representing possible additional new types. HPV types in the genus Gammapapillomavirus were common in WHIM patients, whereas EV patients mainly shed HPVs from the genus Betapapillomavirus. Preliminary evidence based on three WHIM patients treated with plerixafor, a leukocyte mobilizing agent, suggest that longer-term therapy may correlate with decreased HPV diversity and increased predominance of HPV types associated with childhood skin warts.IMPORTANCE Although some members of the viral family Papillomaviridae cause benign skin warts (papillomas), many human papillomavirus (HPV) infections are not associated with visible symptoms. For example, most healthy adults chronically shed Gammapapillomavirus (Gamma) virions from apparently healthy skin surfaces. To further explore the diversity of papillomaviruses, we performed viromic surveys on immunodeficient individuals suffering from florid skin warts. Our results nearly double the number of known Gamma HPV types and suggest that WHIM syndrome patients are uniquely susceptible to Gamma HPV-associated skin warts. Preliminary results suggest that treatment with the drug plerixafor may promote resolution of the unusual Gamma HPV skin warts observed in WHIM patients.


Subject(s)
DNA, Viral/genetics , Immunologic Deficiency Syndromes/complications , Papillomaviridae/classification , Papillomaviridae/isolation & purification , Papillomavirus Infections/virology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , DNA, Viral/chemistry , Female , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Male , Metagenomics , Middle Aged , Mucous Membrane/virology , Nucleic Acid Amplification Techniques , Papillomaviridae/genetics , Skin/virology , Young Adult
18.
Cell Host Microbe ; 23(5): 628-635.e7, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29746834

ABSTRACT

BK polyomavirus (BKV) frequently causes nephropathy (BKVN) in kidney transplant recipients (KTRs). BKV has also been implicated in the etiology of bladder and kidney cancers. We characterized BKV variants from two KTRs who developed BKVN followed by renal carcinoma. Both patients showed a swarm of BKV sequence variants encoding non-silent mutations in surface loops of the viral major capsid protein. The temporal appearance and disappearance of these mutations highlights the intra-patient evolution of BKV. Some of the observed mutations conferred resistance to antibody-mediated neutralization. The mutations also modified the spectrum of receptor glycans engaged by BKV during host cell entry. Intriguingly, all observed mutations were consistent with DNA damage caused by antiviral APOBEC3 cytosine deaminases. Moreover, APOBEC3 expression was evident upon immunohistochemical analysis of renal biopsies from KTRs. These results provide a snapshot of in-host BKV evolution and suggest that APOBEC3 may drive BKV mutagenesis in vivo.


Subject(s)
BK Virus/genetics , Cytosine Deaminase/physiology , Kidney Transplantation , Polyomavirus Infections/virology , Tumor Virus Infections/virology , APOBEC Deaminases , Adult , Amino Acid Substitution , Animals , Antibodies, Neutralizing , Antibodies, Viral , BK Virus/immunology , Capsid Proteins/genetics , Cell Line , Chromosome Mapping , Cytidine Deaminase , DNA Damage , DNA, Viral/analysis , DNA, Viral/genetics , Female , HEK293 Cells , Humans , Italy , Kidney Diseases/pathology , Kidney Diseases/virology , Male , Middle Aged , Mutation , Polyomavirus Infections/blood , Polyomavirus Infections/immunology , Polyomavirus Infections/pathology , Tumor Virus Infections/blood , Tumor Virus Infections/immunology , Tumor Virus Infections/pathology
19.
Front Microbiol ; 9: 546, 2018.
Article in English | MEDLINE | ID: mdl-29632522

ABSTRACT

Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on ß-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.

20.
J Immunol ; 200(6): 2076-2089, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29386255

ABSTRACT

Although it is clear that high-risk human papillomaviruses (HPVs) can selectively infect keratinocytes and persist in the host, it still remains to be unequivocally determined whether they can escape antiviral innate immunity by interfering with pattern recognition receptor (PRR) signaling. In this study, we have assessed the innate immune response in monolayer and organotypic raft cultures of NIKS cells harboring multiple copies of episomal HPV18 (NIKSmcHPV18), which fully recapitulates the persistent state of infection. We show for the first time, to our knowledge, that NIKSmcHPV18, as well as HeLa cells (a cervical carcinoma-derived cell line harboring integrated HPV18 DNA), display marked downregulation of several PRRs, as well as other PRR downstream effectors, such as the adaptor protein stimulator of IFN genes and the transcription factors IRF1 and 7. Importantly, we provide evidence that downregulation of stimulator of IFN genes, cyclic GMP-AMP synthase, and retinoic acid-inducible gene I mRNA levels occurs at the transcriptional level through a novel epigenetic silencing mechanism, as documented by the accumulation of repressive heterochromatin markers seen at the promoter region of these genes. Furthermore, stimulation of NIKSmcHPV18 cells with salmon sperm DNA or poly(deoxyadenylic-deoxythymidylic) acid, two potent inducers of PRR signaling, only partially restored PRR protein expression. Accordingly, the production of IFN-ß and IFN-λ1 was significantly reduced in comparison with the parental NIKS cells, indicating that HPV18 exerts its immunosuppressive activity through downregulation of PRR signaling. Altogether, our findings indicate that high-risk human papillomaviruses have evolved broad-spectrum mechanisms that allow simultaneous depletion of multiple effectors of the innate immunity network, thereby creating an unreactive cellular milieu suitable for viral persistence.


Subject(s)
DNA/genetics , Human papillomavirus 18/genetics , Interferon-beta/genetics , Receptors, Pattern Recognition/genetics , Signal Transduction/genetics , Transcription, Genetic/genetics , 3T3 Cells , Animals , Cell Line , Cell Line, Tumor , Down-Regulation/genetics , Gene Expression Regulation, Viral/genetics , HeLa Cells , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/genetics , Keratinocytes/virology , Ligands , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...