Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Chem ; 12: 1359191, 2024.
Article in English | MEDLINE | ID: mdl-38633986

ABSTRACT

Utilization of organic phosphates and insoluble phosphates for the gradual generation of plant-available phosphorus (P) is the only sustainable solution for P fertilization. Enzymatic conversions are one of the best sustainable routes for releasing P to soil. Phosphatase enzyme aids in solubilizing organic and insoluble phosphates to plant-available P. We herein report the preparation of highly functional chitosan beads co-immobilized with acid phosphatase and alkaline phosphatase enzymes via a glutaraldehyde linkage. The dual enzyme co-immobilized chitosan beads were characterized using Fourier-transform infrared (FTIR), thermogravimetric (TGA), and scanning electron microscopy-energy dispersive x-ray (SEM-EDX) analyses to confirm the immobilization. The co-immobilized system was found to be active for a broader pH range of ∼4-10 than the individually bound enzymes and mixed soluble enzymes. The bound matrix exhibited pH optima at 6 and 9, respectively, for acid and alkaline phosphatase and a temperature optimum at 50°C. The phosphate-solubilizing abilities of the chitosan-enzyme derivatives were examined using insoluble tri-calcium phosphate (TCP) for wide pH conditions of 5.5, 7, and 8.5 up to 25 days. The liberation of phosphate was highest (27.20 mg/mL) at pH 5.5 after the defined period. The residual soil phosphatase activity was also monitored after 7 days of incubation with CBE for three different soils of pH ∼5.5, 7, and 8.5. The residual phosphatase activity increased for all the soils after applying the CBE. The germination index of the Oryza sativa (rice) plant was studied using different pH buffer media upon the application of the CBE in the presence of tri-calcium phosphate as a phosphate source. Overall, the dual-enzyme co-immobilized chitosan beads were highly effective over a wide pH range for generating plant-available phosphates from insoluble phosphates. The chitosan-enzyme derivative holds the potential to be used for sustainable phosphorus fertilization with different insoluble and organic phosphorus sources.

2.
ACS Omega ; 8(45): 43151-43162, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024765

ABSTRACT

Myo-inositol hexakisphosphates (IHPs) or phytates are the most abundant organic phosphates having the potential to serve as a phosphorus reserve in soil. Understanding the fate of IHP interaction with soil minerals tends to be crucial for its efficient storage and utilization as a slow-release organic phosphate fertilizer. We have systematically compared the effective intercalation strategy of a phytate onto Zn-Fe layered double hydroxide (LDH) acting as storage/carrier material through coprecipitation and anion exchange. Powder X-ray diffraction, X-ray photoelectron spectroscopy, elemental analysis, thermogravimetric analysis, FTIR spectra, and molecular modeling demonstrated the formation of phytate-intercalated Zn-Fe LDH through coprecipitation with a maximum loading of 41.34% (w/w) in the pH range of ∼9-10 in a vertical alignment through monolayer formation. No intercalation product was obtained from the anion exchange method, which was concluded based on the absence of shifting in the XRD (003) peak. A change in the zeta potential values from positive to negative and subsequent increase in solution pH, with decreasing phytate concentration, are suggestive of adsorption of IHP onto the LDH surface. The batch adsorption data were best fitted with Langmuir isotherm equation and followed the pseudo-second-order kinetic model. The maximum adsorption capacity was found to be 45.87 mg g-1 at a temperature of 25 ± 0.5 °C and pH 5.63.

3.
Biol Trace Elem Res ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37755587

ABSTRACT

The effects of human activities are becoming clearer every year, with multiple reports of struggling and eroded ecosystems resulting in new threats of plant and animal extinctions throughout the world. It has been speculated that roadside tea-growing soils impact on metal dynamics from soil to tea plants and subsequently to tea infusion which may be threatened by increasingly unpredictable and dangerous surroundings. Furthermore, heavy metals released from vehicles on the national highway (NH) could be a source of metal contamination in roadside tea soils and tea plants. This study was articulated to realize the effect of NH on a buildup of selected metals (Cu, Cd, Fe, Mn, Ni, and Zn) in made tea along with repeated tea infusion. In general, metal concentration was found significantly higher in made tea prepared from the young shoots collected from the vicinity of NH. The results also showed that distance from the NH and infusion process significantly influenced to content of the analysed metal in tea infusions. The mean average daily intake (ADI) and hazard quotient (HQ) values of analysed tea samples were found in the orderMn˃Fe˃Zn˃Cu˃Ni˃Cd and Mn˃Cu˃Zn˃Fe˃Ni˃Cd, respectively. The HQ values of all analysed metals were found << 1, indicating that ingestion of tea infusion with analysed heavy metals should not cause a danger to human health. However, this study further demonstrates the consumption of tea infusion prepared from made tea around the vicinity of NH may contribute to a significantly higher quantity of metal intake in the human body. From the hierarchical cluster analysis, it has been observed that there are three homogenous groups of analysed heavy metals.

4.
J Hazard Mater ; 442: 129970, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36162303

ABSTRACT

A field study was conducted from 0 to 360 days to investigate the effect of tea pruning litter biochar (TPLBC) on the accumulation of major micronutrients (copper: Cu, manganese: Mn, and zinc: Zn) in soil, their uptake by tea plant (clone: S.3 A/3) and level of contamination in soil due to TPLBC. To evaluate the level of contamination due to TPLBC, a soil pollution assessment was carried out using the geo-accumulation index (Igeo), enrichment factor (EF), contamination factor (CF), potential ecological risk factor (PERF), individual contamination factor (ICF), and risk assessment code (RAC). The total content of Cu, Mn, and Zn gradually increased with increasing doses of TPLBC at 0D, and then decreased with time. The fractionation of the three micronutrients in soil changed after the application of TPLBC. The contamination risk assessment of soil for Cu, Mn, and Zn based on the Igeo, EF, CF, PERF,ICF, and RAC suggested that the application of TPLBC does not have any adverse effect on soil. Except for Mn, the bioconcentration and translocation factors were less than one for Cu and Zn. Results from this study revealed that the application of 400 kg TPLBC ha-1 is significantly better than the other treatments for Cu, Mn, and Zn at a 5% level of significance.


Subject(s)
Camellia sinensis , Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/analysis , Micronutrients/analysis , Tea , Copper/analysis , Manganese/analysis , Environmental Monitoring/methods , Zinc/analysis , Risk Assessment , Metals, Heavy/analysis
6.
Food Chem X ; 13: 100255, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35498976

ABSTRACT

Effect of tea pruning litter biochar (TPLBC) on arsenic (As), cadmium (Cd) and chromium (Cr) content in made tea and successive tea infusions were investigated in a greenhouse experiment with two tea cultivars (TV23 and S.3A/3). Made tea prepared from TV23 and S.3A/3 clone, a decrease in the concentration of As, Cd, and Cr by 36.73%, 16.22%, 13.96%, and 36.63%, 27.78%, 10.54%, respectively over control on the application of the highest dose of TPLBC (500 kg TPLBC ha-1). Irrespective of treatments, studied element concentrations were significantly higher (p ≤ 0.05) in the first infusion and lower in the third. Considering Ten g made tea consumption per person per day, the maximum average daily intakes of As, Cd and Cr in a higher dose of TPLBC were far below the tolerable weekly intake prescribed by the World Health Organization. As hazard quotient values of selected elements were ≪ 1, no significant adverse health consequences are expected for tea consumers.

7.
RSC Adv ; 12(11): 6704-6714, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35424620

ABSTRACT

Indiscriminate use of chemical fertilizers leads to soil environmental disbalance and therefore, preparation and application of environment-friendly slow-release multifunctional fertilizers are of paramount importance for sustainable crop production in the present scenario. In this study, we propose a slow-release multifunctional composite nitrogen (N) fertilizer, which possesses the ability to supply plant accessible N in the form of ammonium (NH4 +) and nitrate (NO3 -) to improve nitrate assimilation coupled with zinc (Zn, a major micronutrient for plants in the soil) after its degradation. For this purpose, NO3 --intercalated zinc-aluminum (Zn-Al) layered double hydroxide (LDH) was synthesized using a co-precipitation protocol. The prepared LDH was added as 25.45% of total polymer weight to a sodium carboxymethyl cellulose/hydroxyethyl cellulose citric acid (NaCMC/HEC-CA) biodegradable hydrogel. A. brasilense, commonly used nitrogen-fixing bacteria in soils, was added to the LDH-hydrogel composite along with LDH alone to augment the availability of NH4 + and NO3 -. Adjusting the pH under acidic (pH 5.25) and neutral (pH 7) conditions, the release pattern of NO3 - from LDH and the composite was monitored for 30 days at normal temperature. The pH was selected based on the soil analysis data of North East India. The LDH-composite released 90% (w/w) and 85.45% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively in 30 days. However, 100% (w/w) and 87% (w/w) of intercalated NO3 - at pH 5.25 and 7.00 respectively were released in 30 days when only LDH was applied, which indicated the lower performance of LDH alone in comparison to the LDH-composite for the nitrate holding pattern. The pH of the bacteria-loaded system was observed to be acidic (pH = 5-6) during the study of nitrate assimilation and Zn2+ release. A. brasilense improved nitrate assimilation and increased the NH4 + ion concentration in the studied system. A significant increase in Zn2+ release was observed from day 5 in the presence of A. brasilense in the LDH-composite compared with that in the absence of A. brasilense. In conclusion, the prepared LDH-hydrogel-A. brasilense composite fertilizer system increases the availability of plant accessible N form (both NO3 - and NH4 +) and can potentially improve soil fertility with the addition of Zn and bacteria to the soil in the extended course.

8.
Diagnostics (Basel) ; 12(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35204453

ABSTRACT

The aetiology of non-malaria vector-borne diseases in malaria-endemic, forested, rural, and tribal-dominated areas of Dhalai, Tripura, in north-east India, was studied for the first time in the samples collected from malaria Rapid Diagnostic Kit negative febrile patients by door-to-door visits in the villages and primary health centres. Two hundred and sixty serum samples were tested for the Dengue NS1 antigen and the IgM antibodies of Dengue, Chikungunya, Scrub Typhus (ST), and Japanese Encephalitis (JE) during April 2019-March 2020. Fifteen Dengue, six JE, twelve Chikungunya, nine ST and three Leptospirosis, and mixed infections of three JE + Chikungunya, four Dengue + Chikungunya, three Dengue + JE + Chikungunya, one Dengue + Chikungunya + ST, and one Dengue + ST were found positive by IgM ELISA tests, and four for the Dengue NS1 antigen, all without any travel history. True prevalence values estimated for infections detected by Dengue IgM were 0.134 (95% CI: 0.08-0.2), Chikungunya were 0.084 (95% CI: 0.05-0.13), Scrub were 0.043 (95% CI: 0.01-0.09), and Japanese Encephalitis were 0.045 (95% CI: 0.02-0.09). Dengue and Chikungunya were associated significantly more with a younger age. There was a lack of a defined set of symptoms for any of the Dengue, Chikungunya, JE or ST infections, as indicated by the k-modes cluster analysis. Interestingly, most of these symptoms have an overlapping set with malaria; thereby, it becomes imperative that malaria and these non-malaria vector-borne disease diagnoses are made in a coordinated manner. Findings from this study call for advances in routine diagnostic procedures and the development of a protocol that can accommodate, currently, in practicing the rapid diagnosis of malaria and other vector-borne diseases, which is doable even in the resource-poor settings of rural hospitals and during community fever surveillance.

9.
Front Plant Sci ; 13: 1017145, 2022.
Article in English | MEDLINE | ID: mdl-36605950

ABSTRACT

Harnessing the potential yields of evergreen perennial crops like tea (Camellia sinensis L.) essentially requires the application of optimum doses of nutrients based on the soil test reports. In the present study, the soil pH, organic carbon (OC), available potassium as K2O (AK), and available sulphur (AS) of 7300 soil samples from 115 tea estates spread over the Dooars ranging from 88°52'E to 89°86'E longitude and 26°45'N to 27°00'N latitude of West Bengal, India have been documented. About 54% of soil samples were found within the optimum range of soil pH (4.50-5.50) for tea cultivation. The overall range of OC was found from 0.28% to 6.00% of which, 94% of the analyzed samples were within the range of satisfactory to excellent level of OC i.e. (>0.80% to 6.00%). Around 36.3% of soil samples were found to have high AK (>100 mg kg-1) but 37.1% of soils were found to have high AS content (>40 mg kg-1). The nutrient index status of soil pH was low in Dam Dim, Chulsa, Nagrakata, Binnaguri, and Jainti sub-districts. Soils from five sub-districts had a high nutrient index (2.47 to 2.83) for soil organic carbon. However, it existed in the medium index (1.69 and 2.22) for Dalgaon and Kalchini sub-districts. Only Nagrakata sub-district soil samples were in the high nutrient index (2.65) for AK. All analyzed samples showed a medium nutrient index (1.97 to 2.27) for AS. The result indicated that soil pH was significantly negatively correlated with soil OC (-0.336) and AK (-0.174). However, the soil OC was significantly positive correlated with AK (0.258) and AS (0.100). It could be concluded that a balanced fertilizer application would be needed as a part of the soil improvement program through soil chemical tests for sustainable tea cultivation.

10.
Pathogens ; 10(10)2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34684207

ABSTRACT

With India aiming to achieve malaria elimination by 2030, several strategies have been put in place. With that aim, mass surveillance is now being conducted in some malaria-endemic pockets. As dry season mass surveillance has been shown to have its importance in targeting the reservoir, a study was undertaken to assess the parasite load by a sensitive molecular method during one of the mass surveys conducted in the dry winter period. It was executed in two malaria-endemic villages of Dhalai District, Tripura, in northeast India, also reported as P. falciparum predominated area. The present study found an enormous burden of Rapid Diagnostic Test negative malaria cases with P. vivax along with P. vivax and P. falciparum mixed infections during the mass surveillance from febrile and afebrile cases in dry winter months (February 2021-March 2021). Of the total 150 samples tested, 72 (48%) were positive and 78 (52%) negative for malaria by PCR. Out of the 72 positives, 6 (8.33%) were P. falciparum, 40 (55.55%) P. vivax, and 26 (36.11%) mixed infections. Out of 78 malaria negative samples, 6 (7.7%) were with symptoms, while among the total malaria positive, 72 cases 7 (9.8%) were with symptoms, and 65 (90.2%) were asymptomatic. Out of 114 samples tested by both microscopy and PCR, 42 samples turned out to be submicroscopic with 4 P. falciparum, 23 P. vivax, and 15 mixed infections. Although all P. vivax submicroscopic infections were asymptomatic, three P. falciparum cases were found to be febrile. Evidence of malaria transmission was also found in the vectors in the winter month. The study ascertained the use of molecular diagnostic techniques in detecting the actual burden of malaria, especially of P. vivax, in mass surveys. As Jhum cultivators in Tripura are at high risk, screening for the malarial reservoirs in pre-Jhum months can help with malaria control and elimination.

11.
Bioresour Technol ; 318: 124023, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32882483

ABSTRACT

The present study aimed to optimize the production of biochar from tea (Camellia sinensis L.) pruning litter. Characterization of biochar prepared from four tea pruning litters (mixed, Tocklai Vegetative 1, 22 and 25) at five pyrolysis temperatures (250, 300, 350, 400, 450, and 500 °C for 3 h) were documented. The results demonstrated that yield, total nitrogen, H:C, and O:C decreased steadily with increasing pyrolysis temperature. However, water holding capacity, ash content, fixed carbon, C:N, NH4+-N, NO3--N, trace elements, total P and K, and germination index increased consistently with increasing pyrolysis temperature. All the prepared biochars are suitable for agriculture application as H:C and O:C ratios of prepared biochars are <0.6 and <0.4, respectively. Low pyrolysis temperature (<300 °C) was optimal to get more stable biochar with respect to essential nutrients. Biochar derived from Tocklai Vegetative 1 at 300 °C has more potential for agronomic applications. Principal component analysis showed >96% variability.


Subject(s)
Camellia sinensis , Charcoal , Tea , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...