Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 15(4): 676-681, 2020 04.
Article in English | MEDLINE | ID: mdl-31638091

ABSTRACT

At present, there is no reliable biomarker for the diagnosis of traumatic brain injury (TBI). Studies have shown that extracellular vesicles released by damaged cells into biological fluids can be used as potential biomarkers for diagnosis of TBI and evaluation of TBI severity. We hypothesize that the genetic profile of salivary extracellular vesicles in patients with head trauma differs from that in uninjured subjects. Findings from this hypothesis would help investigate the severity of TBI. This study included 19 subjects, consisting of seven healthy controls who denied history of head trauma, six patients diagnosed with concussion injury from an outpatient concussion clinic, and six patients with TBI who received treatment in the emergency department within 24 hours after injury. Real-time PCR analysis of salivary extracellular vesicles in participants was performed using TaqMan Human Inflammation array. Gene expression analysis revealed nine upregulated genes in emergency department patients (LOX5, ANXA3, CASP1, IL2RG, ITGAM, ITGB2, LTA4H, MAPK14, and TNFRSF1A) and 13 upregulated genes in concussion clinic patients compared with healthy participants (ADRB1, ADRB2, BDKRB1, HRH1, HRH2, LTB4R2, LTB4R, PTAFR, CYSLTR1, CES1, KLK1, MC2R, and PTGER3). Each patient group had a unique profile. Comparison between groups showed that 15 inflammation-related genes had significant expression change. Our results indicate that inflammation biomarkers can be used for diagnosis of TBI and evaluation of disease severity. This study was approved by the Institutional Review Board on December 18, 2015 (approval No. 0078-12) and on June 9, 2016 (approval No. 4093-16).

2.
Int J Mol Sci ; 20(21)2019 Nov 02.
Article in English | MEDLINE | ID: mdl-31684046

ABSTRACT

We have previously shown that injury induced by irradiation to murine marrow can be partially or completely reversed by exposure to human or murine mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs). Investigation of the biodistribution of EVs in vivo is essential for understanding EV biology. In this study, we evaluated the DiD lipid dye labeled MSC-EV biodistribution in mice under different conditions, including different MSC-EV doses and injection schedules, time post MSC-EV injection, and doses of radiation. DiD-labeled MSC-EVs appeared highest in the liver and spleen; lower in bone marrow of the tibia, femur, and spine; and were undetectable in the heart, kidney and lung, while a predominant EV accumulation was detected in the lung of mice infused with human lung fibroblast cell derived EVs. There was significantly increased MSC-EV accumulation in the spleen and bone marrow (tibia and femur) post radiation appearing with an increase of MSC-EV uptake by CD11b+ and F4/80+ cells, but not by B220 cells, compared to those organs from non-irradiated mice. We further demonstrated that increasing levels of irradiation caused a selective increase in vesicle homing to marrow. This accumulation of MSC-EVs at the site of injured bone marrow could be detected as early as 1 h after MSC- EV injection and was not significantly different between 2 and 24 h post MSC-EV injection. Our study indicates that irradiation damage to hematopoietic tissue in the spleen and marrow targets MSC-EVs to these tissues.


Subject(s)
Bone Marrow/metabolism , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Radiation Injuries/metabolism , Animals , Bone Marrow/pathology , Bone Marrow/radiation effects , Cells, Cultured , Coloring Agents/chemistry , Extracellular Vesicles/chemistry , Extracellular Vesicles/transplantation , Humans , Liver/metabolism , Male , Mesenchymal Stem Cells/chemistry , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Fluorescence , Spleen/metabolism
3.
J Cell Physiol ; 234(11): 21193-21198, 2019 11.
Article in English | MEDLINE | ID: mdl-31012111

ABSTRACT

Pulmonary hypertension (PH) is an incurable disease characterized by pulmonary vascular remodeling and ultimately death. Two rodent models of PH include treatment with monocrotaline or exposure to a vascular endothelial growth factor receptor inhibitor and hypoxia. Studies in these models indicated that damaged lung cells evolve extracellular vesicles which induce production of progenitors that travel back to the lung and induce PH. A study in patients with pulmonary myelofibrosis and PH indicated that 100 cGy lung irradiation could remit both diseases. Previous studies indicated that murine progenitors were radiosensitive at very low doses, suggesting that 100 cGy treatment of mice with induced PH might be an effective PH therapy. Our hypothesis is that the elimination of the PH-inducing marrow cells by low dose irradiation would remove the cellular influences creating PH. Here we show that low dose whole-body irradiation can both prevent and reverse established PH in both rodent models of PH.


Subject(s)
Hypertension, Pulmonary , Whole-Body Irradiation , Animals , Bone Marrow Cells/radiation effects , Mice , Radiotherapy
4.
Am J Physiol Cell Physiol ; 317(2): C155-C166, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30917031

ABSTRACT

Many different subpopulations of subcellular extracellular vesicles (EVs) have been described. EVs are released from all cell types and have been shown to regulate normal physiological homeostasis, as well as pathological states by influencing cell proliferation, differentiation, organ homing, injury and recovery, as well as disease progression. In this review, we focus on the bidirectional actions of vesicles from normal and diseased cells on normal or leukemic target cells; and on the leukemic microenvironment as a whole. EVs from human bone marrow mesenchymal stem cells (MSC) can have a healing effect, reversing the malignant phenotype in prostate and colorectal cancer, as well as mitigating radiation damage to marrow. The role of EVs in leukemia and their bimodal cross talk with the encompassing microenvironment remains to be fully characterized. This may provide insight for clinical advances via the application of EVs as potential therapy and the employment of statistical and machine learning models to capture the pleiotropic effects EVs endow to a dynamic microenvironment, possibly allowing for precise therapeutic intervention.


Subject(s)
Biomarkers, Tumor/metabolism , Extracellular Vesicles/metabolism , Leukemia/metabolism , Mesenchymal Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , Tumor Microenvironment , Animals , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Cell Communication , Drug Resistance, Neoplasm , Extracellular Vesicles/drug effects , Extracellular Vesicles/genetics , Extracellular Vesicles/pathology , Humans , Leukemia/drug therapy , Leukemia/genetics , Leukemia/pathology , Machine Learning , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/pathology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Phenotype , Signal Transduction , Systems Biology/methods
5.
J Cell Physiol ; 234(8): 14377-14388, 2019 08.
Article in English | MEDLINE | ID: mdl-30644102

ABSTRACT

Traumatic brain injury (TBI) is a common cause of death and acquired disability in adults and children. Identifying biomarkers for mild TBI (mTBI) that can predict functional impairments on neuropsychiatric and neurocognitive testing after head trauma is yet to be firmly established. Extracellular vesicles (EVs) are known to traffic from the brain to the oral cavity and can be detected in saliva. We hypothesize the genetic profile of salivary EVs in patients who have suffered head trauma will differ from normal healthy controls, thus constituting a unique expression signature for mTBI. We enrolled a total of 54 subjects including for saliva sampling, 23 controls with no history of head traumas, 16 patients enrolled from an outpatient concussion clinic, and 15 patients from the emergency department who had sustained a head trauma within 24 hr. We performed real-time PCR of the salivary EVs of the 54 subjects profiling 96 genes from the TaqMan Human Alzheimer's disease array. Real-time PCR analysis revealed 57 (15 genes, p < 0.05) upregulated genes in emergency department patients and 56 (14 genes, p < 0.05) upregulated genes in concussion clinic patients when compared with controls. Three genes were upregulated in both the emergency department patients and concussion clinic patients: CDC2, CSNK1A1, and CTSD ( p < 0.05). Our results demonstrate that salivary EVs gene expression can serve as a viable source of biomarkers for mTBI. This study shows multiple Alzheimer's disease genes present after an mTBI.


Subject(s)
Biomarkers , Brain Injuries, Traumatic/genetics , CDC2 Protein Kinase/genetics , Casein Kinase Ialpha/genetics , Cathepsin D/genetics , Adolescent , Adult , Aged , Alzheimer Disease/genetics , Brain Concussion/genetics , Brain Concussion/pathology , Brain Injuries, Traumatic/diagnosis , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Child , Emergency Service, Hospital , Extracellular Vesicles/genetics , Female , Gene Expression Regulation/genetics , Humans , Male , Middle Aged , Saliva/metabolism , Young Adult
6.
Sci Rep ; 7: 41920, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28157220

ABSTRACT

Single-nucleotide polymorphisms (SNPs) in cytokine genes can affect gene expression and thereby modulate inflammation and carcinogenesis. However, the data on the association between SNPs in the interleukin 1 beta gene (IL1B) and colorectal cancer (CRC) are conflicting. We found an association between a 4-SNP haplotype block of the IL1B (-3737C/-1464G/-511T/-31C) and CRC risk, and this association was exclusively observed in individuals with a higher proportion of African ancestry, such as individuals from the Coastal Colombian region (odds ratio, OR 2.06; 95% CI 1.31-3.25; p < 0.01). Moreover, a significant interaction between this CRC risk haplotype and local African ancestry dosage was identified in locus 2q14 (p = 0.03). We conclude that Colombian individuals with high African ancestry proportions at locus 2q14 harbour more IL1B-CGTC copies and are consequently at an increased risk of CRC. This haplotype has been previously found to increase the IL1B promoter activity and is the most frequent haplotype in African Americans. Despite of limitations in the number of samples and the lack of functional analysis to examine the effect of these haplotypes on CRC cell lines, our results suggest that inflammation and ethnicity play a major role in the modulation of CRC risk.


Subject(s)
Colorectal Neoplasms/genetics , Interleukin-1beta/genetics , Polymorphism, Single Nucleotide , Adult , Aged , Black People/genetics , Case-Control Studies , Chromosomes, Human, Pair 2/genetics , Colombia , Colorectal Neoplasms/ethnology , Female , Genetic Loci , Haplotypes , Humans , Male , Middle Aged
7.
FASEB J ; 29(8): 3571-81, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25962655

ABSTRACT

Colorectal cancer (CRC) is the second-most common cause of cancer-related mortality. The most important prognostic factors are lymph node (LN) involvement and extranodal metastasis. Our objective is to investigate the interactions between CD133(+)CXCR4(+) (CXC receptor 4) colorectal cancer tumor-initiating cells (Co-TICs) and the LN stromal microenvironment in human CRC extranodal metastasis. We established a unique humanized orthotopic xenograft model. Luciferase-tagged CRC cell lines and human cancer cells were injected intrarectally into nonobese diabetic/SCID mice. Mesenteric LN stromal cells, stromal cell line HK, or CXCL12 knockdown HK (HK-KD-A3) cells were coinoculated with CRC cells. Tumor growth and metastasis were monitored by bioluminescent imaging and immunohistochemistry. We found that this model mimics the human CRC metastatic pattern with CRC cell lines or patient specimens. Adding LN stromal cells promotes CRC tumor growth and extranodal metastasis (P < 0.001). Knocking down CXCL12 impaired HK cell support of CRC tumor formation and extranodal metastasis. When HK cells were added, sorted CD133(+)CXCR4(+) Co-TICs showed increased tumor formation and extranodal metastasis capacities compared to unseparated and non-Co-TIC populations. In conclusion, both Co-TIC and LN stromal factors play crucial roles in CRC metastasis through the CXCL12/CXCR4 axis. Blocking Co-TIC/LN-stromal interactions may lead to effective therapy to prevent extranodal metastasis.


Subject(s)
Cellular Microenvironment/physiology , Colorectal Neoplasms/pathology , Lymph Nodes/pathology , Lymphatic Metastasis/pathology , Neoplastic Stem Cells/pathology , Stromal Cells/pathology , AC133 Antigen , Animals , Antigens, CD/metabolism , Cell Line, Tumor , Cell Movement/physiology , Chemokine CXCL12/metabolism , Colorectal Neoplasms/metabolism , Disease Models, Animal , Glycoproteins/metabolism , HT29 Cells , Humans , Lymph Nodes/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Peptides/metabolism , Receptors, CXCR4/metabolism , Stromal Cells/metabolism
8.
J Exp Ther Oncol ; 8(2): 129-44, 2009.
Article in English | MEDLINE | ID: mdl-20192119

ABSTRACT

The anti-cancer properties of the green tea-derived mixture Polyphenon E (Poly E) have been demonstrated in a variety of cell culture and animal models. We recently discovered that the H460 lung cancer cell line is markedly resistant to the growth inhibitory effects of Poly E compared with SW480 colon and Flo-1 esophageal cancer cells. We investigated the mechanism of H460 resistance by comparing gene expression profiles of Poly E-sensitive and -resistant cells. Unsupervised hierarchical clustering revealed that Poly E-sensitive cells clustered separately from Poly E-resistant cells, and 6,242 genes were differentially expressed between the two groups at the 0.01 level of significance. We discovered that BCL2 gene and protein expression were significantly higher in H460 cells compared with SW480 and Flo-1 cells (10.60-fold higher gene expression; P < 0.0001). Inhibition of BCL2 expression and activity, using siRNA and the small molecule inhibitor HA14-1 respectively, restored sensitivity to Poly E and induced BCL2-related apoptosis by decreasing mitochondrial membrane potential and inducing PARP cleavage. Our results suggest that increased BCL2 expression may contribute to H460 resistance to the growth inhibitory effects of Poly E. If validated in additional laboratory and clinical models, BCL2 could ultimately be used as a marker of Poly E resistance.


Subject(s)
Catechin/analogs & derivatives , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genes, bcl-2/drug effects , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/biosynthesis , Apoptosis/drug effects , Blotting, Western , Catechin/pharmacology , Cell Line, Tumor , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Membrane Potentials/drug effects , Mitochondrial Membranes/drug effects , Poly(ADP-ribose) Polymerases/metabolism , RNA, Neoplasm/biosynthesis , RNA, Neoplasm/genetics , RNA, Small Interfering , Tea/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...