Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 59(84): 12629-12632, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37791684

ABSTRACT

The absolute stereochemistry of the α-amino and α-hydroxyphosphonates is determined using a chiroptical sensor. The induced helicity of the host-guest complex is correlated to the chirality of the guest molecule via a simple binding model. The relative size of the substituents dictates the predominant helical population, leading to an easy circular dichroic readout.

2.
ACS Cent Sci ; 9(5): 870-882, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37252355

ABSTRACT

Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA dihomo-γ-linolenic acid (DGLA) specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH (CYP, cytochrome P450; EH, epoxide hydrolase), representing a new class of lipid metabolites that induce neurodegeneration via ferroptosis.

3.
J Org Chem ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36795431

ABSTRACT

Various structural elements of the Cinchona alkaloid dimers are interrogated to establish a structure-enantioselectivity relationship (SER) in three different halocyclization reactions. SER for chlorocyclizations of a 1,1-disubstituted alkenoic acid, a 1,1-disubstituted alkeneamide, and a trans-1,2-disubstituted alkeneamide showed variable sensitivities to linker rigidity and polarity, aspects of the alkaloid structure, and the presence of two or only one alkaloid side group defining the catalyst pocket. The conformational rigidity of the linker-ether connections was probed via DFT calculations on the methoxylated models, uncovering especially high barriers to ether rotation out of plane in the arene systems that include the pyridazine ring. These linkers are also found in the catalysts with the highest enantioinduction. The diversity of the SER results suggested that the three apparently analogous test reactions may proceed by significantly different mechanisms. Based on these findings, a stripped-down analogue of (DHQD)2PYDZ, termed "(trunc)2PYDZ", was designed, synthesized, and evaluated, showing modest but considerable asymmetric induction in the three test reactions, with the best performance on the 1,1-disubstituted alkeneamide cyclization. This first effort to map out the factors essential to effective stereocontrol and reaction promotion offers guidance for the simplified design and systematic refinement of new, selective organocatalysts.

4.
Analyst ; 148(5): 1085-1092, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36722993

ABSTRACT

Cysteine-based Michael addition is a widely employed strategy for covalent conjugation of proteins, peptides, and drugs. The covalent reaction is irreversible in most cases, leading to a lack of control over the process. Utilizing spectroscopic analyses along with X-ray crystallographic studies, we demonstrate Michael addition of an engineered cysteine residue in human Cellular Retinol Binding Protein II (hCRBPII) with a coumarin analog that creates a non-fluorescent complex. UV-illumination reverses the conjugation, yielding a fluorescent species, presumably through a retro-Michael process. This series of events can be repeated between a bound and non-bound form of the cysteine reversibly, resulting in the ON-OFF control of fluorescence. The details of the mechanism of photoswitching was illuminated by recapitulation of the process in light irradiated single crystals, confirming the mechanism at atomic resolution.


Subject(s)
Cysteine , Proteins , Humans , Cysteine/chemistry , Fluorescence
5.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711920

ABSTRACT

Even after decades of research, the mechanism of neurodegeneration remains understudied, hindering the discovery of effective treatments for neurodegenerative diseases. Recent reports suggest that ferroptosis could be a novel therapeutic target for neurodegenerative diseases. While polyunsaturated fatty acid (PUFA) plays an important role in neurodegeneration and ferroptosis, how PUFAs may trigger these processes remains largely unknown. PUFA metabolites from cytochrome P450 and epoxide hydrolase metabolic pathways may modulate neurodegeneration. Here, we test the hypothesis that specific PUFAs regulate neurodegeneration through the action of their downstream metabolites by affecting ferroptosis. We find that the PUFA, dihomo gamma linolenic acid (DGLA), specifically induces ferroptosis-mediated neurodegeneration in dopaminergic neurons. Using synthetic chemical probes, targeted metabolomics, and genetic mutants, we show that DGLA triggers neurodegeneration upon conversion to dihydroxyeicosadienoic acid through the action of CYP-EH, representing a new class of lipid metabolite that induces neurodegeneration via ferroptosis.

6.
ACS Catal ; 13(19): 13117-13126, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-38516048

ABSTRACT

Two epoxidation catalysts, one of which consists of two VANOL ligands and an aluminum and the other that consists of two VANOL ligands and a boron, were compared. Both catalysts are highly effective in the catalytic asymmetric epoxidation of a variety of aromatic and aliphatic aldehydes with diazoacetamides, giving high yields and excellent asymmetric inductions. The aluminum catalyst is effective at 0 °C and the boron catalyst at -40 °C. Although both the aluminum and boron catalysts of (R)-VANOL give very high asymmetric inductions (up to 99% ee), they give opposite enantiomers of the epoxide. The mechanism, rate- and enantioselectivity-determining step, and origin of enantiodivergence are evaluated using density functional theory calculations.

7.
ACS Appl Mater Interfaces ; 14(48): 53511-53522, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36408853

ABSTRACT

Photodynamic therapy (PDT) has the potential to improve cancer treatment by providing dual selectivity through the use of both photoactive agent and light, with the goal of minimal harmful effects from either the agent or light alone. However, current PDT is limited by insufficient photosensitizers (PSs) that can suffer from low tissue penetration, insufficient phototoxicity (toxicity with light irradiation), or undesirable cytotoxicity (toxicity without light irradiation). Recently, we reported a platform for decoupling optical and electronic properties with counterions that modulate frontier molecular orbital levels of a photoactive ion. Here, we demonstrate the utility of this platform in vivo by pairing near-infrared (NIR) photoactive heptamethine cyanine cation (Cy+), which has enhanced optical properties for deep tissue penetration, with counterions that make it cytotoxic, phototoxic, or nontoxic in a mouse model of breast cancer. We find that pairing Cy+ with weakly coordinating anion FPhB- results in a selectively phototoxic PS (CyFPhB) that stops tumor growth in vivo with minimal side effects. This work provides proof of concept that our counterion pairing platform can be used to generate improved cancer PSs that are selectively phototoxic to tumors and nontoxic to normal healthy tissues.


Subject(s)
Neoplasms , Salts , Animals , Mice , Neoplasms/drug therapy
8.
J Mol Struct ; 12672022 Nov 05.
Article in English | MEDLINE | ID: mdl-36310922

ABSTRACT

In contrast to Aß plaques, the spatiotemporal distribution of neurofibrillary tangles of hyperphosphorylated tau (p-tau) predicts cognitive impairment in Alzheimer's disease (AD), underscoring the key pathological role of p-tau and the utmost need to develop AD therapeutics centering upon the control of p-tau aggregation and cytotoxicity. Our drug discovery program is focused on compounds that prevent the aggregation and cytotoxicity of p-tau moieties of the tau isoform 1N4R due to its prevalence (1 N) and long-distance trans-synaptic propagation (4R). We prepared and tested twenty-four newly synthesized small molecules representing the urea (1, 2, 3), sulfonylurea (4), and sulfonamide (5-24) series and evaluated their anti-aggregation effects with biophysical methods (thioflavin T and S fluorescence assays, transmission electron microscopy) and intracellular inclusion cell-based assays. Pre-evaluation was performed on alpha-synuclein (α-syn) to identify molecules to be challenged with p-tau. The sulfonamide derivatives 18 and 20 exhibited an anti-fribrillization activity on α-syn and p-tau. Sulfonamide compounds 18 and 20 reduced inclusion formation in M17D neuroblastoma cells that express inclusion-prone αSynuclein3K::YFP. This project advances new concepts in targeting prone-to-aggregate proteins such as α-syn and p-tau, and provides a molecular scaffold for further optimization and pre-clinical studies focused on AD drug development.

9.
Angew Chem Int Ed Engl ; 61(8): e202115173, 2022 02 14.
Article in English | MEDLINE | ID: mdl-34881491

ABSTRACT

Employing halenium affinity (HalA) as a guiding tool, the weak nucleophilic character of alkyl ketones was modulated by the templating effect of a tethered 2-tetrahydropyranyl(THP)-protected alcohol towards realizing a bromenium ion initiated spiroketalization cascade. Addition of ethanol aided an early termination of the cascade by scavenging the THP group after the halofunctionalization stage, furnishing monobromospiroketals. Alternatively, exclusion of ethanol from the reaction mixture biased the transient oxocarbenium towards α-deprotonation that precedes a second bromofunctionalization event thus, furnishing dibrominated spiroketals. The regio- and stereoselectivity exploited in the current methodology provides a novel and rapid access to the dibrominated spiroketal motifs exhibited by several natural products.


Subject(s)
Bromine/chemistry , Furans/chemistry , Spiro Compounds/chemistry , Ions/chemistry , Molecular Structure , Stereoisomerism
10.
J Phys Chem B ; 125(45): 12486-12499, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34752096

ABSTRACT

Several fluorene derivatives exhibit excited-state reactivity and relaxation dynamics that remain to be understood fully. We report here the spectral relaxation dynamics of two fluorene derivatives to evaluate the role of structural modification in the intramolecular relaxation dynamics and intermolecular interactions that characterize this family of chromophores. We have examined the time-resolved spectral relaxation dynamics of two compounds, NCy-FR0 and MK-FR0, in protic and aprotic solvents using steady-state and time-resolved emission spectroscopy and quantum chemical computations. Both compounds exhibit spectral relaxation characteristics similar to those seen in FR0, indicating that hydrogen bonding interactions between the chromophore and solvent protons play a significant role in determining the relaxation pathways available to three excited electronic states.


Subject(s)
Fluorenes , Hydrogen Bonding , Solutions , Solvents , Spectrometry, Fluorescence
11.
J Phys Chem B ; 125(44): 12242-12253, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34726920

ABSTRACT

Substituted fluorene structures have demonstrated unusual photochemical properties. Previous reports on the substituted fluorene Schiff base FR0-SB demonstrated super photobase behavior with a ΔpKb of ∼14 upon photoexcitation. In an effort to understand the basis for this unusual behavior, we have examined the electronic structure and relaxation dynamics of the structural precursor of FR0-SB, the aldehyde FR0, in protic and aprotic solvents using time-resolved fluorescence spectroscopy and quantum chemical calculations. The calculations show three excited singlet states in relatively close energetic proximity. The spectroscopic data are consistent with relaxation dynamics from these electronic states that depend on the presence and concentration of solvent hydroxyl functionality. These results underscore the central role of solvent hydrogen bonding to the FR0 aldehyde oxygen in mediating the relaxation dynamics within this molecule.


Subject(s)
Fluorenes , Schiff Bases , Hydrogen Bonding , Solvents , Spectrometry, Fluorescence
12.
Chemistry ; 27(66): 16389-16400, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34653286

ABSTRACT

Artificial biomimetic chromophore-protein complexes inspired by natural visual pigments can feature color tunability across the full visible spectrum. However, control of excited state dynamics of the retinal chromophore, which is of paramount importance for technological applications, is lacking due to its complex and subtle photophysics/photochemistry. Here, ultrafast transient absorption spectroscopy and quantum mechanics/molecular mechanics simulations are combined for the study of highly tunable rhodopsin mimics, as compared to retinal chromophores in solution. Conical intersections and transient fluorescent intermediates are identified with atomistic resolution, providing unambiguous assignment of their ultrafast excited state absorption features. The results point out that the electrostatic environment of the chromophore, modified by protein point mutations, affects its excited state properties allowing control of its photophysics with same power of chemical modifications of the chromophore. The complex nature of such fine control is a fundamental knowledge for the design of bio-mimetic opto-electronic and photonic devices.


Subject(s)
Rhodopsin , Schiff Bases , Molecular Dynamics Simulation , Photochemistry , Rhodopsin/genetics , Static Electricity
13.
Chem Sci ; 12(37): 12333-12345, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34603663

ABSTRACT

An effective catalyst has been developed for the three-component reaction of aldehydes, anilines and phosphites in an asymmetric catalytic Kabachnik-Fields reaction to give α-aminophosphonates. A catalyst was sought that would give high asymmetric inductions for aromatic and, and more particularly, for aliphatic aldehydes since there has not previously been an effective catalyst developed for this class of aldehydes. The optimal catalyst is prepared from three equivalents of the 7,7'-di-t-butylVANOL ligand, one equivalent of N-methylimidazole and one equivalent of zirconium tetraisopropoxide. This catalyst was most efficient in the presence of 10 mol% benzoic acid. Optimal conditions for aryl aldehydes required the use of 3,5-diisopropyl-2-hydroxyaniline and gave the aryl α-aminophosphonates in up to 96% yield and 98% ee over 11 different aryl aldehydes. The best aniline for aliphatic aldehydes was found to be 3-t-butyl-2-hydroxyaniline and gave the corresponding phosphonates in up to 83% yield and 97% ee over 18 examples. The asymmetric inductions for aliphatic aldehydes were comparable with those for aromatic aldehydes with a mean induction of 90% ee for the former and 91% ee for the latter. The best method for the liberation of the free amine from the aniline substituted α-aminophosphonates involved oxidation with N-iodosuccinimide.

14.
J Am Chem Soc ; 143(37): 15091-15102, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34516091

ABSTRACT

The incredible potential for fluorescent proteins to revolutionize biology has inspired the development of a variety of design strategies to address an equally broad range of photophysical characteristics, depending on potential applications. Of these, fluorescent proteins that simultaneously exhibit high quantum yield, red-shifted emission, and wide separation between excitation and emission wavelengths (Large Stokes Shift, LSS) are rare. The pursuit of LSS systems has led to the formation of a complex, obtained from the marriage of a rationally engineered protein (human cellular retinol binding protein II, hCRBPII) and different fluorogenic molecules, capable of supporting photobase activity. The large increase in basicity upon photoexcitation leads to protonation of the fluorophore in the excited state, dramatically red-shifting its emission, leading to an LSS protein/fluorophore complex. Essential for selective photobase activity is the intimate involvement of the target protein structure and sequence that enables Excited State Proton Transfer (ESPT). The potential power and usefulness of the strategy was demonstrated in live cell imaging of human cell lines.


Subject(s)
Luminescent Proteins/chemistry , Protein Engineering , Glutamic Acid/chemistry , HeLa Cells , Humans , Photochemical Processes
15.
Acc Chem Res ; 54(3): 654-667, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33428849

ABSTRACT

Stereochemistry is a fundamental molecular property with important ramifications for structure, function, and activity of organic molecules. The basic building blocks of living organisms (amino acids and sugars) exhibit a precisely selected set of molecular handedness that has evolved over millions of years. The absolute stereochemistry of these building blocks is manifested in the structure and function of the cell machinery (e.g., enzymes, proteins, etc.), which are essential components of life. In the many chemical subdisciplines, molecular stereochemistry is exceedingly important and is often a strong determinant of structure and function. Besides its biological implications, the centrally important role of stereochemistry in many disciplines of chemistry and related fields has led to tremendous effort and activity, highlighted by the success in stereoselective syntheses of a host of functionalities. In the present climate, it is often the difficulty of assigning absolute stereochemistry as opposed to synthesis, which has become a nontrivial challenge, requiring the attention of the community. There will not be a general solution to this problem, as each system will have its own unique requirements and challenges; however, the need for rapid, routine, and microscale analysis is apparent. This is especially true with parallel and high-throughput arrays for screening conditions and catalysts, generating a large number of samples that require analysis.In this Account, we summarize our contribution to this field through the development of molecular receptors for sensing molecular asymmetry. These methodologies strive to unambiguously assign the absolute configuration of asymmetric center(s). To accomplish this task, our laboratory has designed a variety of host molecules, bearing various binding elements, to form stable complexes with chiral molecules (guests). During this complexation event, the stereochemistry of a target molecule induces a supramolecular chirality (i.e., helicity) within the host system. The design of the host system is such that the helicity of the host/guest complex can be observed and assigned via Exciton Coupled Circular Dichroism (ECCD), a nonempirical technique for identifying handedness, which is correlated back to the absolute stereochemistry of the bound chiral molecule. Taking advantage of the high sensitivity of chiroptical techniques (in terms of the required amount of sample for analysis) and fast response time, these methodologies offer a microscale, rapid, and nonempirical solution for assignment of absolute stereochemistry.The first part of this Account describes application of porphyrin tweezers as reporters of chirality for the absolute stereochemical determination of various classes of organic molecules. This methodology is suitable to report the absolute configuration of organic molecules that contain two binding elements (nitrogen or oxygen based functionalities). In the second part, host systems that do not require two sites of attachment to form ECCD active complexes will be described. This enables the absolute stereochemical assignment of challenging chiral molecules with functional groups lacking routine techniques for analysis.

16.
J Chem Phys ; 153(22): 224301, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33317305

ABSTRACT

Two-photon excitation (TPE) is an attractive means for controlling chemistry in both space and time. Since isoenergetic one- and two-photon excitations (OPE and TPE) in non-centrosymmetric molecules are allowed to reach the same excited state, it is usually assumed that they produce similar excited-state reactivity. We compare the solvent-to-solute excited-state proton transfer of the super photobase FR0-SB following isoenergetic OPE and TPE. We find up to 62% increased reactivity following TPE compared to OPE. From steady-state spectroscopy, we rule out the involvement of different excited states and find that OPE and TPE spectra are identical in non-polar solvents but not in polar ones. We propose that differences in the matrix elements that contribute to the two-photon absorption cross sections lead to the observed enhanced isoenergetic reactivity, consistent with the predictions of our high-level coupled-cluster-based computational protocol. We find that polar solvent configurations favor greater dipole moment change between ground and excited states, which enters the probability for TPE as the absolute value squared. This, in turn, causes a difference in the Franck-Condon region reached via TPE compared to OPE. We conclude that a new method has been found for controlling chemical reactivity via the matrix elements that affect two-photon cross sections, which may be of great utility for spatial and temporal precision chemistry.

17.
Phys Chem Chem Phys ; 22(35): 19613-19622, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32936138

ABSTRACT

The significance of solvent structural factors in the excited-state proton transfer (ESPT) reactions of Schiff bases with alcohols is reported here. We use the super photobase FR0-SB and a series of primary, secondary, and tertiary alcohol solvents to illustrate the steric issues associated with solvent to photobase proton transfer. Steady-state and time-resolved fluorescence data show that ESPT occurs readily for primary alcohols, with a probability proportional to the relative -OH concentration. For secondary alcohols, ESPT is greatly diminished, consistent with the barrier heights obtained using quantum chemistry calculations. ESPT is not observed in the tertiary alcohol. We explain ESPT using a model involving an intermediate hydrogen-bonded complex where the proton is "shared" by the Schiff base and the alcohol. The formation of this complex depends on the ability of the alcohol solvent to achieve spatial proximity to and alignment with the FR0-SB* imine lone pair stabilized by the solvent environment.

18.
Chembiochem ; 21(22): 3192-3196, 2020 11 16.
Article in English | MEDLINE | ID: mdl-32608180

ABSTRACT

Domain-swapping is a mechanism for evolving new protein structure from extant scaffolds, and has been an efficient protein-engineering strategy for tailoring functional diversity. However, domain swapping can only be exploited if it can be controlled, especially in cases where various folds can coexist. Herein, we describe the structure of a domain-swapped trimer of the iLBP family member hCRBPII, and suggest a mechanism for domain-swapped trimerization. It is further shown that domain-swapped trimerization can be favored by strategic installation of a disulfide bond, thus demonstrating a strategy for fold control. We further show the domain-swapped trimer to be a useful protein design template by installing a high-affinity metal binding site through the introduction of a single mutation, taking advantage of its threefold symmetry. Together, these studies show how nature can promote oligomerization, stabilize a specific oligomer, and generate new function with minimal changes to the protein sequence.


Subject(s)
Protein Engineering , Retinol-Binding Proteins, Cellular/chemistry , Crystallography, X-Ray , Humans , Models, Molecular , Protein Conformation , Protein Folding
19.
Methods Enzymol ; 639: 389-411, 2020.
Article in English | MEDLINE | ID: mdl-32475412

ABSTRACT

Fluorescence cell imaging provides a powerful tool to study biological processes including regulation, protein-protein interaction, trafficking, development, cellular structure and morphology, to name a few. Complimentary to fluorescent proteins (FPs), the development of multiple site-selective labeling techniques offer choice and flexibility in selection of fluorophores for optimal experimental design. Near-infrared (NIR) labels are highly desired since they enable deeper imaging depths and cleaner optical windows. Photochromic labels are also desirable since they provide the capability to control the fluorescence "turn-ON" and in some cases "turn-OFF" functionality. In addition, no-wash labeling techniques can greatly simplify experimental procedures and offer real-time imaging options. Also, compared to most of the regular FPs, these systems are often matured rapidly and do not need molecular oxygen for activation. Here, we present a no-wash photochromic NIR fluorescence live cell imaging approach. This method uses engineered human Cellular Retinol Binding Protein II (hCRBPII) as a genetically encodable tag and a solvatochromic dye FR-1V as the fluorophore. At the heart of this system, a photo-triggered switching between NIR "OFF" and "ON" modes provide spatiotemporal control for subcellular fluorescence imaging.


Subject(s)
Fluorescent Dyes , Optical Imaging , Humans , Molecular Structure , Proteins , Retinol-Binding Proteins, Cellular
20.
J Phys Chem Lett ; 11(11): 4245-4252, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32374610

ABSTRACT

The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-cis to all-trans conversion of retinal protonated Schiff base (rPSB) and all-trans to 15-cis isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV-vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13═C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15═N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.


Subject(s)
Rhodopsin/chemistry , Rhodopsin/radiation effects , Isomerism , Light , Quantum Theory , Receptors, Retinoic Acid , Schiff Bases/chemistry , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...