Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 36(1): 100-114.e25, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31257072

ABSTRACT

Type I protein arginine methyltransferases (PRMTs) catalyze asymmetric dimethylation of arginines on proteins. Type I PRMTs and their substrates have been implicated in human cancers, suggesting inhibition of type I PRMTs may offer a therapeutic approach for oncology. The current report describes GSK3368715 (EPZ019997), a potent, reversible type I PRMT inhibitor with anti-tumor effects in human cancer models. Inhibition of PRMT5, the predominant type II PRMT, produces synergistic cancer cell growth inhibition when combined with GSK3368715. Interestingly, deletion of the methylthioadenosine phosphorylase gene (MTAP) results in accumulation of the metabolite 2-methylthioadenosine, an endogenous inhibitor of PRMT5, and correlates with sensitivity to GSK3368715 in cell lines. These data provide rationale to explore MTAP status as a biomarker strategy for patient selection.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/deficiency , Alternative Splicing , Antineoplastic Agents/chemistry , Biomarkers , Cell Line, Tumor , Drug Synergism , Enzyme Inhibitors/chemistry , Humans , Methylation , Models, Molecular , Molecular Conformation , Molecular Structure , Protein Binding , Protein-Arginine N-Methyltransferases/chemistry , Substrate Specificity
2.
Sci Rep ; 8(1): 9711, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29946150

ABSTRACT

Evasion of the potent tumour suppressor activity of p53 is one of the hurdles that must be overcome for cancer cells to escape normal regulation of cellular proliferation and survival. In addition to frequent loss of function mutations, p53 wild-type activity can also be suppressed post-translationally through several mechanisms, including the activity of PRMT5. Here we describe broad anti-proliferative activity of potent, selective, reversible inhibitors of protein arginine methyltransferase 5 (PRMT5) including GSK3326595 in human cancer cell lines representing both hematologic and solid malignancies. Interestingly, PRMT5 inhibition activates the p53 pathway via the induction of alternative splicing of MDM4. The MDM4 isoform switch and subsequent p53 activation are critical determinants of the response to PRMT5 inhibition suggesting that the integrity of the p53-MDM4 regulatory axis defines a subset of patients that could benefit from treatment with GSK3326595.


Subject(s)
Nuclear Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/metabolism , RNA Splicing/genetics , Tumor Suppressor Protein p53/metabolism , Alternative Splicing/genetics , Antineoplastic Agents , Arginine/analogs & derivatives , Arginine/metabolism , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle Proteins , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Enzyme Inhibitors/pharmacology , Humans , Nuclear Proteins/genetics , Protein Isoforms/genetics , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Proto-Oncogene Proteins/genetics , Tumor Suppressor Protein p53/genetics , snRNP Core Proteins/metabolism
3.
Sci Rep ; 7(1): 17993, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269946

ABSTRACT

CARM1 is an arginine methyltransferase with diverse histone and non-histone substrates implicated in the regulation of cellular processes including transcriptional co-activation and RNA processing. CARM1 overexpression has been reported in multiple cancer types and has been shown to modulate oncogenic pathways in in vitro studies. Detailed understanding of the mechanism of action of CARM1 in oncogenesis has been limited by a lack of selective tool compounds, particularly for in vivo studies. We describe the identification and characterization of, to our knowledge, the first potent and selective inhibitor of CARM1 that exhibits anti-proliferative effects both in vitro and in vivo and, to our knowledge, the first demonstration of a role for CARM1 in multiple myeloma (MM). EZM2302 (GSK3359088) is an inhibitor of CARM1 enzymatic activity in biochemical assays (IC50 = 6 nM) with broad selectivity against other histone methyltransferases. Treatment of MM cell lines with EZM2302 leads to inhibition of PABP1 and SMB methylation and cell stasis with IC50 values in the nanomolar range. Oral dosing of EZM2302 demonstrates dose-dependent in vivo CARM1 inhibition and anti-tumor activity in an MM xenograft model. EZM2302 is a validated chemical probe suitable for further understanding the biological role CARM1 plays in cancer and other diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , CARD Signaling Adaptor Proteins/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use , Guanylate Cyclase/antagonists & inhibitors , Isoxazoles/therapeutic use , Multiple Myeloma/drug therapy , Pyrimidines/therapeutic use , Spiro Compounds/therapeutic use , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacokinetics , Humans , In Vitro Techniques , Isoxazoles/pharmacokinetics , Male , Mice , Neoplasm Transplantation , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Spiro Compounds/pharmacokinetics
4.
Bioorg Med Chem Lett ; 21(24): 7416-20, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-22041057

ABSTRACT

The pyrrolamides are a new class of antibacterial agents targeting DNA gyrase, an essential enzyme across bacterial species and inhibition results in the disruption of DNA synthesis and subsequently, cell death. The optimization of biochemical activity and other drug-like properties through substitutions to the pyrrole, piperidine, and heterocycle portions of the molecule resulted in pyrrolamides with improved cellular activity and in vivo efficacy.


Subject(s)
Amides/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyrroles/chemistry , Topoisomerase II Inhibitors , Amides/chemical synthesis , Amides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Binding Sites , Crystallography, X-Ray , DNA Gyrase/metabolism , Enzyme Inhibitors/chemical synthesis , Microbial Sensitivity Tests , Protein Structure, Tertiary , Structure-Activity Relationship
5.
J Mol Biol ; 315(5): 1145-54, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11827482

ABSTRACT

B cell activating factor (BAFF), a ligand belonging to the tumor necrosis factor (TNF) family, plays a critical role in regulating survival and activation of peripheral B cell populations and has been associated with autoimmune disease. BAFF is known to interact with three receptors, BCMA, TACI and BAFF-R, that have distant similarities with other receptors of the TNF family. We have determined the crystal structure of the TNF-homologous domain of BAFF at 2.8 A resolution. The structure reveals significant differences when compared to other TNF family members, including an unusually long D-E loop that participates in the formation of a deep, concave and negatively charged region in the putative receptor binding site. The BAFF structure was further used to generate a homology model of APRIL, a closely related TNF family ligand that also binds to BCMA and TACI, but not BAFF-R. Analysis of the putative receptor binding sites of BAFF and APRIL suggests that differences in the D-E loop structure and electrostatic surface potentials may be important for determining binding specificities for BCMA, TACI and BAFF-R.


Subject(s)
B-Lymphocytes/drug effects , Membrane Proteins/chemistry , Membrane Proteins/pharmacology , Tumor Necrosis Factor-alpha/chemistry , Tumor Necrosis Factor-alpha/pharmacology , Amino Acid Sequence , B-Cell Activating Factor , B-Cell Activation Factor Receptor , Binding Sites , Crystallization , Crystallography, X-Ray , Evolution, Molecular , Humans , Hydrogen Bonding , Membrane Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Neuropeptides/chemistry , Neuropeptides/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, Tumor Necrosis Factor/chemistry , Receptors, Tumor Necrosis Factor/metabolism , Sequence Alignment , Solvents/metabolism , Static Electricity , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...