Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Rep ; 12(1): e15891, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38163669

ABSTRACT

Cardiovascular rhythms representing functional states of the autonomic nervous system (ANS) are insufficiently reflected by the current physiological model based on low and high frequency bands (LF, HF, resp.). An intermediate (IM) frequency band generated by a brainstem pacemaker was included in systemic physiological ANS analyses of forehead skin perfusion (SP), ECG, and respiration. Data of 38 healthy participants at T0 and T1 (+1 week) before, during, and following osteopathic cranial vault hold (CVH) stimulation were analyzed including momentary frequencies of highest amplitude, amplitudes in low (0.05-0.12 Hz), IM (0.12-0.18 Hz), and high (0.18-0.4 Hz) frequency bands, and established heart rate variability (HRV) metrics. During CVH, LF interval durations increased, whereas IM/HF band durations decreased significantly. Amplitudes increased significantly in all frequency bands. A cluster analysis found one response pattern dominated by IM activity (47% of participants) with highly stable 0.08 Hz oscillation to CVH, and one dominated by LF activity (0.10 Hz) at T0, increasing to IM activity at T1. Showing frequency ratios at ≈3:1, respiration was not responsible for oscillations in PPG during CVH. HRV revealed no significant responses. Rhythmic patterns in SP and respiration matched previous findings on a reticular "0.15 Hz rhythm". Involvement of baroreflex pathways is discussed as alternative explanation.


Subject(s)
Autonomic Nervous System , Cardiovascular System , Humans , Blood Pressure/physiology , Autonomic Nervous System/physiology , Respiration , Baroreflex , Heart Rate/physiology
2.
Sci Rep ; 13(1): 14645, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37670111

ABSTRACT

Cardiorespiratory coordination (CRC) probes the interaction between cardiac and respiratory oscillators in which cardiac and respiratory activity are synchronized, with individual heartbeats occurring at approximately the same temporal positions during several breathing cycles. An increase of CRC has previously been related to pathological stressful states. We studied CRC employing coordigrams computed from non-contact photoplethysmography imaging (PPGI) and respiratory data using the optical flow method. In a blocked study design, we applied the cold pressure test (CPT), water at ambient temperature (AWT), and intermittent resting conditions. In controls (no intervention), CRC remained on initial low levels throughout measurements. In the experimental group (AWT and CPT intervention), CRC decreased during AWT and CPT. Following both interventions, CRC increased significantly, with a rebound effect following AWT. In controls, HR increased steadily over time. CPT evoked a significant HR increase which correlated with subjective stress/pain ratings. The CRC increase following AWT correlated significantly with subjective pain (r = .79) and stress (r = .63) ratings. Furthermore, we observed a significant correlation (r = - .80) between mean RMSSD and mean duration of CRC, which further supports an association between autonomic state and CRC level. CRC analysis obtained from cutaneous tissue perfusion data therefore appears to be a sensitive and useful method for the study of CRC and ANS activity. Future studies need to investigate the physiological principles and clinical significance of these findings.


Subject(s)
Autonomic Nervous System , Photoplethysmography , Humans , Clinical Relevance , Heart , Pain
3.
Sci Rep ; 13(1): 6611, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095164

ABSTRACT

Intermediate (IM) band physiology in skin blood flow exhibits parallels with the primary respiratory mechanism (PRM) or cranial rhythmic impulse (CRI), controversial concepts of osteopathy in the cranial field (OCF). Owing to inconsistent manual palpation results, validity of evidence of PRM/CRI activity has been questionable. We therefore tried to validate manual palpation combining instrumented tracking and algorithmic objectivation of frequencies, amplitudes, and phases. Using a standard OCF intervention, cranial vault hold (CVH), two OCF experts palpated and digitally marked CRI frequencies in 25 healthy adults. Autonomic nervous system (ANS) activity in low frequency (LF) and IM band in photoplethysmographic (PPG) forehead skin recordings was probed with momentary frequency of highest amplitude (MFHA) and wavelet amplitude spectra (WAS) in examiners and participants. Palpation errors and frequency expectation bias during CVH were analyzed for phases of MFHA and CRI. Palpated CRI frequencies (0.05-0.08 Hz) correlated highly with mean MFHA frequencies with 1:1 ratio in 77% of participants (LF-responders; 0.072 Hz) and with 2:1 ratio in 23% of participants (IM-responders; 0.147 Hz). WAS analysis in both groups revealed integer number (harmonic) waves in (very) low and IM bands in > 98% of palpated intervals. Phase analyses in participants and examiners suggested synchronization between MFHA and CRI in a subset of LF-responders. IM band physiology in forehead PPG may offer a sensible physiological correlate of palpated CRI activity. Possible coordination or synchronization effects with additional physiological signals and between examiners and participants should be investigated in future studies.


Subject(s)
Manipulation, Osteopathic , Palpation , Adult , Humans , Skull/physiology , Forehead , Skin
4.
Sensors (Basel) ; 23(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36679796

ABSTRACT

In today's neonatal intensive care units, monitoring vital signs such as heart rate and respiration is fundamental for neonatal care. However, the attached sensors and electrodes restrict movement and can cause medical-adhesive-related skin injuries due to the immature skin of preterm infants, which may lead to serious complications. Thus, unobtrusive camera-based monitoring techniques in combination with image processing algorithms based on deep learning have the potential to allow cable-free vital signs measurements. Since the accuracy of deep-learning-based methods depends on the amount of training data, proper validation of the algorithms is difficult due to the limited image data of neonates. In order to enlarge such datasets, this study investigates the application of a conditional generative adversarial network for data augmentation by using edge detection frames from neonates to create RGB images. Different edge detection algorithms were used to validate the input images' effect on the adversarial network's generator. The state-of-the-art network architecture Pix2PixHD was adapted, and several hyperparameters were optimized. The quality of the generated RGB images was evaluated using a Mechanical Turk-like multistage survey conducted by 30 volunteers and the FID score. In a fake-only stage, 23% of the images were categorized as real. A direct comparison of generated and real (manually augmented) images revealed that 28% of the fake data were evaluated as more realistic. An FID score of 103.82 was achieved. Therefore, the conducted study shows promising results for the training and application of conditional generative adversarial networks to augment highly limited neonatal image datasets.


Subject(s)
Image Processing, Computer-Assisted , Infant, Premature , Infant, Newborn , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Movement , Electrosurgery
5.
Biomed Opt Express ; 13(7): 4058-4070, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35991927

ABSTRACT

Spatial mapping of skin perfusion provides essential information about physiological processes that are often hidden from the eyes of the examining physician. The perfusion map quality depends on several key factors, such as the camera system type, frame rate, sensitivity, or signal-to-noise ratio. When investigating physiological parameters, the reference signal allows for increasing the spatial resolution of the photoplethysmography imaging (PPGI) system. On the other hand, it increases the system complexity and the synchronization prerequisites. Our solution is a hardware device that modulates the reference biosignal into the audio frequency band. This signal is connected to the mic input of a digital camera or a smartphone, enabling the transformation of such a device into a PPGI measurement system even in the case of compressed video recording using lock-in amplification technique. It also brings the possibility of synchronous recording of PPGI and another reference signal such as conventional photoplethysmogram or electrocardiogram.

6.
Sci Rep ; 12(1): 5997, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35397640

ABSTRACT

Distributed cutaneous tissue blood volume oscillations contain information on autonomic nervous system (ANS) regulation of cardiorespiratory activity as well as dominating thermoregulation. ANS associated with low-frequency oscillations can be quantified in terms of frequencies, amplitudes, and phase shifts. The relative order between these faculties may be disturbed by conditions colloquially termed 'stress'. Photoplethysmography imaging, an optical non-invasive diagnostic technique provides information on cutaneous tissue perfusion in the temporal and spatial domains. Using the cold pressure test (CPT) in thirteen healthy volunteers as a well-studied experimental intervention, we present a method for evaluating phase shifts in low- and intermediate frequency bands in forehead cutaneous perfusion mapping. Phase shift changes were analysed in low- and intermediate frequency ranges from 0.05 Hz to 0.18 Hz. We observed that time waveforms increasingly desynchronised in various areas of the scanned area throughout measurements. An increase of IM band phase desynchronization observed throughout measurements was comparable in experimental and control group, suggesting a time effect possibly due to overshooting the optimal relaxation duration. CPT triggered an increase in the number of points phase-shifted to the reference that was specific to the low frequency range for phase-shift thresholds defined as π/4, 3π/8, and π/2 rad, respectively. Phase shifts in forehead blood oscillations may infer changes of vascular tone due to activity of various neural systems. We present an innovative method for the phase shift analysis of cutaneous tissue perfusion that appears promising to assess ANS change processes related to physical or psychological stress. More comprehensive studies are needed to further investigate the reliability and physiological significance of findings.


Subject(s)
Photoplethysmography , Skin , Autonomic Nervous System , Humans , Perfusion , Photoplethysmography/methods , Reproducibility of Results , Skin/blood supply
7.
Sensors (Basel) ; 21(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917589

ABSTRACT

A capacitive measurement of the biosignals is a very comfortable and unobtrusive way suitable for long-term and wearable monitoring of health conditions. This type of sensing is very susceptible to noise from the surroundings. One of the main noise sources is power-line noise, which acts as a common-mode voltage at the input terminals of the acquisition unit. The origin and methods of noise reduction are described on electric models. Two methods of noise removal are modeled and experimentally verified in the paper. The first method uses a passive capacitive grounding electrode, and the second uses an active capacitive Driven Right Leg (DRL) electrode. The effect of grounding electrode size on noise suppression is experimentally investigated. The increasing electrode area reduces power-line noise: the power of power-line frequency within the measured signal is 70.96 dB, 59.13 dB, and 43.44 dB for a grounding electrode area of 1650 cm2, 3300 cm2, and 4950 cm2, respectively. The capacitive DRL electrode shows better efficiency in common-mode noise rejection than the grounding electrode. When using an electrode area of 1650 cm2, the DRL achieved 46.3 dB better attenuation than the grounding electrode at power-line frequency. In contrast to the grounding electrode, the DRL electrode reduces a capacitive measurement system's financial costs due to the smaller electrode area made of the costly conductive textile.

8.
Sensors (Basel) ; 20(8)2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32331326

ABSTRACT

This article introduces a two-electrode ground-free electrocardiogram (ECG) with minimal hardware complexity, which is ideal for wearable battery-powered devices. The main issue of ground-free measurements is the presence of noise. Therefore, noise suppression methods that can be employed for a two-electrode ECG acquisition system are discussed in detail. Experimental measurements of a living subject and patient simulator are used to investigate and compare the performance of the three proposed methods utilizing the ADS1191 analogue front-end for biopotential measurements. The resulting signals recorded for the simulator indicate that all three methods should be suitable for suppressing power-line noise. The Power Spectral Density (PSD) of the signals measured for a subject exhibits differences across methods; the signal power at 50 Hz is -28, -24.8, and -26 dB for the first, second, and third method, respectively. The digital postprocessing of measured signals acquired a high-quality ECG signal comparable to that of three-electrode sensing. The current consumption measurements demonstrate that all proposed two-electrode ECG solutions are appropriate as a battery-powered device (current consumption < 1.5 mA; sampling rate of 500 SPS). The first method, according to the results, is considered the most effective method in the suppression of power-line noise, current consumption, and hardware complexity.


Subject(s)
Electrocardiography/methods , Electrodes , Algorithms , Humans , Wearable Electronic Devices
9.
Physiol Meas ; 41(5): 054001, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32268307

ABSTRACT

OBJECTIVE: Photoplethysmography imaging (PPGI) is a promising contactless camera-based method of non-invasive cardiovascular diagnostics. To achieve the best results, it is important to choose the most suitable camera for a specific application. The settings of the camera influence the quality of the detected signal. APPROACH: The standard (European Machine Vision Association 2016 EMVA Standard 1288-Standard for Characterization of Image Sensors and Cameras pp 1-39 (available at: https://www.emva.org/wp-content/uploads/EMVA1288-3.1a.pdf)) for evaluating the imaging performance of machine vision cameras (MVC) helps at the initial decision of the sensor, but the camera should always be tested in terms of usability for a specific application. So far, PPGI lacks a standardized measurement scenario for evaluating the performance of individual cameras. For this, we realized a controllable optoelectronic phantom with artificial silicone skin allowing reproducible tests of cameras to verify their suitability for PPGI. The entire system is housed in a light-tight box. We tested an MVC, a digital single-lens reflex camera (DSLR) camera and a webcam. Each camera varies in used technology and price. MAIN RESULTS: We simulated real PPGI measurement conditions simulating the ratio of pulse (AC) and non-pulse (DC) component of the photoplethysmographic signal and achieved AC/DC ratios of 0.5 % on average. An additional OLED panel ensures proper DC providing reproducible measurement conditions. We evaluated the signal morphological features, amplitude spectrum, signal-to-noise ratio (SNR) and spatially dependent changes of simulated subcutaneous perfusion. Here, the MVC proved to be the most suitable device. A DSLR is also suitable for PPGI, but a larger smoothing kernel is required to obtain a perfusion map. The webcam, as the weakest contender, proved to be very susceptible to any inhomogeneous illumination of the examined artificial skin surface. However, it is still able to detect cardiac rhythm. SIGNIFICANCE: The result of our work is an optoelectronic phantom for reproducible testing of PPGI camera performance in terms of signal quality and measurement equipment costs.


Subject(s)
Phantoms, Imaging , Photoplethysmography/instrumentation , Regional Blood Flow , Signal Processing, Computer-Assisted , Skin/blood supply , Humans , Optogenetics , Software , Spatio-Temporal Analysis , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...