Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(26): 16622-16631, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904174

ABSTRACT

Atomically precise graphene nanoribbons (GNRs) have a wide range of electronic properties that depend sensitively on their chemical structure. Several types of GNRs have been synthesized on metal surfaces through selective surface-catalyzed reactions. The resulting GNRs are adsorbed on the metal surface, which may lead to hybridization between the GNR orbitals and those of the substrate. This makes investigation of the intrinsic electronic properties of GNRs more difficult and also rules out capacitive gating. Here, we demonstrate the formation of a dielectric gold chloride adlayer that can intercalate underneath GNRs on the Au(111) surface. The intercalated gold chloride adlayer electronically decouples the GNRs from the metal and leads to a substantial hole-doping of the GNRs. Our results introduce an easily accessible tool in the in situ characterization of GNRs grown on Au(111) that allows for exploration of their electronic properties in a heavily hole-doped regime.

2.
Nanoscale ; 15(41): 16766-16774, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37818609

ABSTRACT

Graphene nanoribbons (GNRs) exhibit a broad range of physicochemical properties that critically depend on their width and edge topology. GNRs with armchair edges (AGNRs) are usually more stable than their counterparts with zigzag edges (ZGNRs) where the low-energy spin-polarized edge states render the ribbons prone to being altered by undesired chemical reactions. On the other hand, such edge-localized states make ZGNRs highly appealing for applications in spintronic and quantum technologies. For GNRs fabricated via on-surface synthesis under ultrahigh vacuum conditions on metal substrates, the expected reactivity of zigzag edges is a serious concern in view of substrate transfer and device integration under ambient conditions, but corresponding investigations are scarce. Using 10-bromo-9,9':10',9''-teranthracene as a precursor, we have thus synthesized hexanthene (HA) and teranthene (TA) as model compounds for ultrashort GNRs with mixed armchair and zigzag edges, characterized their chemical and electronic structure by means of scanning probe methods, and studied their chemical reactivity upon air exposure by Raman spectroscopy. We present a detailed identification of molecular orbitals and vibrational modes, assign their origin to armchair or zigzag edges, and discuss the chemical reactivity of these edges based on characteristic Raman spectral features.

3.
ACS Appl Nano Mater ; 6(15): 13935-13944, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37588262

ABSTRACT

Atomically precise graphene nanoribbons (GNRs) are predicted to exhibit exceptional edge-related properties, such as localized edge states, spin polarization, and half-metallicity. However, the absence of low-resistance nanoscale electrical contacts to the GNRs hinders harnessing their properties in field-effect transistors. In this paper, we make electrical contact with nine-atom-wide armchair GNRs using superconducting alloy MoRe as well as Pd (as a reference), which are two of the metals providing low-resistance contacts to carbon nanotubes. We take a step toward contacting a single GNR by fabricating electrodes with needlelike geometry, with about 20 nm tip diameter and 10 nm separation. To preserve the nanoscale geometry of the contacts, we develop a PMMA-assisted technique to transfer the GNRs onto the prepatterned electrodes. Our device characterizations as a function of bias voltage and temperature show thermally activated gate-tunable conductance in GNR-MoRe-based transistors.

4.
Small ; 18(31): e2202301, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35713270

ABSTRACT

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultrahigh vacuum conditions from Br- and I-substituted precursors. It is shown that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed the integration of 5-AGNRs into devices and the realization of the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

5.
Angew Chem Int Ed Engl ; 59(33): 14106-14110, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32338418

ABSTRACT

In the emerging field of on-surface synthesis, dehalogenative aryl-aryl coupling is unarguably the most prominent tool for the fabrication of covalently bonded carbon-based nanomaterials. Despite its importance, the reaction kinetics are still poorly understood. Here we present a comprehensive temperature-programmed x-ray photoelectron spectroscopy investigation of reaction kinetics and energetics in the prototypical on-surface dehalogenative polymerization of 4,4''-dibromo-p-terphenyl into poly(para-phenylene) on two coinage metal surfaces, Cu(111) and Au(111). We find clear evidence for reversible dehalogenation on Au(111), which is inhibited on Cu(111) owing to the formation of organometallic intermediates. The incorporation of reversible dehalogenation in the reaction rate equations leads to excellent agreement with experimental data and allows extracting the relevant energy barriers. Our findings deepen the mechanistic understanding and call for its reassessment for surface-confined aryl-aryl coupling on the most frequently used metal substrates.

6.
Adv Mater ; 32(12): e1906054, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32048409

ABSTRACT

Graphene nanoribbons (GNRs) have attracted much interest due to their largely modifiable electronic properties. Manifestation of these properties requires atomically precise GNRs which can be achieved through a bottom-up synthesis approach. This has recently been applied to the synthesis of width-modulated GNRs hosting topological electronic quantum phases, with valence electronic properties that are well captured by the Su-Schrieffer-Heeger (SSH) model describing a 1D chain of interacting dimers. Here, ultralow bandgap GNRs with charge carriers behaving as massive Dirac fermions can be realized when their valence electrons represent an SSH chain close to the topological phase boundary, i.e., when the intra- and interdimer coupling become approximately equal. Such a system has been achieved via on-surface synthesis based on readily available pyrene-based precursors and the resulting GNRs are characterized by scanning probe methods. The pyrene-based GNRs (pGNRs) can be processed under ambient conditions and incorporated as the active material in a field effect transistor. A quasi-metallic transport behavior is observed at room temperature, whereas at low temperature, the pGNRs behave as quantum dots showing single-electron tunneling and Coulomb blockade. This study may enable the realization of devices based on carbon nanomaterials with exotic quantum properties.

7.
Nature ; 560(7717): 209-213, 2018 08.
Article in English | MEDLINE | ID: mdl-30089919

ABSTRACT

Boundaries between distinct topological phases of matter support robust, yet exotic quantum states such as spin-momentum locked transport channels or Majorana fermions1-3. The idea of using such states in spintronic devices or as qubits in quantum information technology is a strong driver of current research in condensed matter physics4-6. The topological properties of quantum states have helped to explain the conductivity of doped trans-polyacetylene in terms of dispersionless soliton states7-9. In their seminal paper, Su, Schrieffer and Heeger (SSH) described these exotic quantum states using a one-dimensional tight-binding model10,11. Because the SSH model describes chiral topological insulators, charge fractionalization and spin-charge separation in one dimension, numerous efforts have been made to realize the SSH Hamiltonian in cold-atom, photonic and acoustic experimental configurations12-14. It is, however, desirable to rationally engineer topological electronic phases into stable and processable materials to exploit the corresponding quantum states. Here we present a flexible strategy based on atomically precise graphene nanoribbons to design robust nanomaterials exhibiting the valence electronic structures described by the SSH Hamiltonian15-17. We demonstrate the controlled periodic coupling of topological boundary states18 at junctions of graphene nanoribbons with armchair edges to create quasi-one-dimensional trivial and non-trivial electronic quantum phases. This strategy has the potential to tune the bandwidth of the topological electronic bands close to the energy scale of proximity-induced spin-orbit coupling19 or superconductivity20, and may allow the realization of Kitaev-like Hamiltonians3 and Majorana-type end states21.

8.
Nat Commun ; 8(1): 633, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935943

ABSTRACT

Bottom-up synthesized graphene nanoribbons and graphene nanoribbon heterostructures have promising electronic properties for high-performance field-effect transistors and ultra-low power devices such as tunneling field-effect transistors. However, the short length and wide band gap of these graphene nanoribbons have prevented the fabrication of devices with the desired performance and switching behavior. Here, by fabricating short channel (L ch ~ 20 nm) devices with a thin, high-κ gate dielectric and a 9-atom wide (0.95 nm) armchair graphene nanoribbon as the channel material, we demonstrate field-effect transistors with high on-current (I on > 1 µA at V d = -1 V) and high I on /I off ~ 105 at room temperature. We find that the performance of these devices is limited by tunneling through the Schottky barrier at the contacts and we observe an increase in the transparency of the barrier by increasing the gate field near the contacts. Our results thus demonstrate successful fabrication of high-performance short-channel field-effect transistors with bottom-up synthesized armchair graphene nanoribbons.Graphene nanoribbons show promise for high-performance field-effect transistors, however they often suffer from short lengths and wide band gaps. Here, the authors use a bottom-up synthesis approach to fabricate 9- and 13-atom wide ribbons, enabling short-channel transistors with 105 on-off current ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...