Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Fertil Steril ; 120(4): 729-734, 2023 10.
Article in English | MEDLINE | ID: mdl-37307892

ABSTRACT

Within the field of assisted reproductive technology, artificial intelligence has become an attractive tool for potentially improving success rates. Recently, artificial intelligence-based tools for sperm evaluation and selection during intracytoplasmic sperm injection (ICSI) have been explored, mainly to improve fertilization outcomes and decrease variability within ICSI procedures. Although significant advances have been achieved in developing algorithms that track and rank single sperm in real-time during ICSI, the clinical benefits these might have in improving pregnancy rates from a single assisted reproductive technology cycle remain to be established.


Subject(s)
Artificial Intelligence , Semen , Pregnancy , Female , Humans , Male , Reproductive Techniques, Assisted , Spermatozoa , Sperm Injections, Intracytoplasmic/methods , Pregnancy Rate
2.
Front Cell Dev Biol ; 10: 986997, 2022.
Article in English | MEDLINE | ID: mdl-36313580

ABSTRACT

Upon progesterone stimulation, Endometrial Stromal Cells (EnSCs) undergo a differentiation program into secretory cells (decidualization) to release in abundance factors crucial for embryo implantation. We previously demonstrated that decidualization requires massive reshaping of the secretory pathway and, in particular, of the Golgi complex. To decipher the underlying mechanisms, we performed a time-course transcriptomic analysis of in vitro decidualizing EnSC. Pathway analysis shows that Gene Ontology terms associated with vesicular trafficking and early secretory pathway compartments are the most represented among those enriched for upregulated genes. Among these, we identified a cluster of co-regulated genes that share CREB3L1 and CREB3L2 binding elements in their promoter regions. Indeed, both CREB3L1 and CREB3L2 transcription factors are up-regulated during decidualization. Simultaneous downregulation of CREB3L1 and CREB3L2 impairs Golgi enlargement, and causes dramatic changes in decidualizing EnSC, including Golgi fragmentation, collagen accumulation in dilated Endoplasmic Reticulum cisternae, and overall decreased protein secretion. Thus, both CREB3L1 and CREB3L2 are required for Golgi reshaping and efficient protein secretion, and, as such, for successful decidualization.

3.
Traffic ; 23(1): 4-20, 2022 01.
Article in English | MEDLINE | ID: mdl-34651407

ABSTRACT

Certain cell types must expand their exocytic pathway to guarantee efficiency and fidelity of protein secretion. A spectacular case is offered by decidualizing human endometrial stromal cells (EnSCs). In the midluteal phase of the menstrual cycle, progesterone stimulation induces proliferating EnSCs to differentiate into professional secretors releasing proteins essential for efficient blastocyst implantation. Here, we describe the architectural rearrangements of the secretory pathway of a human EnSC line (TERT-immortalized human endometrial stromal cells (T-HESC)). As in primary cells, decidualization entails proliferation arrest and the coordinated expansion of the entire secretory pathway without detectable activation of unfolded protein response (UPR) pathways. Decidualization proceeds also in the absence of ascorbic acid, an essential cofactor for collagen biogenesis, despite also the secretion of some proteins whose folding does not depend on vitamin C is impaired. However, even in these conditions, no overt UPR induction can be detected. Morphometric analyses reveal that the exocytic pathway does not increase relatively to the volume of the cell. Thus, differently from other cell types, abundant production is guaranteed by a coordinated increase of the cell size following arrest of proliferation.


Subject(s)
Decidua , Endometrium , Decidua/metabolism , Endometrium/metabolism , Female , Humans , Progesterone/metabolism , Progesterone/pharmacology , Secretory Pathway , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...