Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Mol Biol (Mosk) ; 47(3): 513-21, 2013.
Article in Russian | MEDLINE | ID: mdl-23888784

ABSTRACT

Porphyrins comprise a chemical class widely used in drug design. Cationic porphyrins may bind to DNA guanine quadruplexes. We report the parameters of binding of 5,10,15,20-tetrakis(N-carboxymethyl-4-pyridinium)porphyrin (P1) and 5,10,15,20-tetrakis(N-etoxy-carbonylmethyl-4-pyridinium)porphyrin (P2) to antiparallel telomeric G-quadruplex formed by d(TTAGGG)4 sequence (TelQ). The binding constants (K(i)) and the number of binding sites (N(i)) were determined from absorption isotherms generated from absorption spectra of complexes of P1 and P2 with TelQ. Compound P1 demonstrated a high affinity to TelQ (K1 = (40 +/- 6) x 10(6) M(-1), N1 = 1; K2 = (5.4 +/- 0.4) x 10(6) M(-1), N = 2). In contrast, the binding constants of P2-TelQ complexes (K1 = (3.1 +/- 0.2) x 10(6) M(-1), N1 = 1; K2 = (1.2 +/- 0.2) x x 10(6) M(-1), N2 = 2) were one order of magnitude smaller than the respective values for P2-TelQ complexes. Measurements of quantum yield and fluorescence lifetime of drug-TelQ complexes revealed two types of binding sites for P1 and P2 on the quadruplex oligonucleotide. The 'strong' complexes can result from interaction of the porphyrinswith TTA loops whereas the weaker complexes are formed with G-quartets. The altered TelQ conformation detected by circular dichroism spectra of P1-TelQ complexes can be explained by a disruption of a G-quartet. We conclude that peripheral carboxy groups contribute tothe high affinity of P1 for the antiparallel telomeric G-quadruplex.


Subject(s)
Oligodeoxyribonucleotides/chemistry , Porphyrins/chemistry , Fluorescence , Molecular Structure
2.
Mol Biol (Mosk) ; 44(5): 929-37, 2010.
Article in Russian | MEDLINE | ID: mdl-21090248

ABSTRACT

We studied the parameters of binding of 5,10,15,20-tetra-(N-methyl-3-pyridyl)porphyrin (TMPyP3) to the anti-parallel human telomeric G-quadruplex d(TTAGGG)4, the oligonucleotide dTTAGGGTTAGAG(TTAGGG)2 that does not form a quadruplex structure, as well as to the double stranded d(AC)8 x d(GT) and single stranded d(AC)8 and d(GT)8 DNAs. The analysis of absorption revealed that the binding constants and the number of DNA binding sites for TMPyP3 were d(AC)8 < d(GT)8 < d(AC)8 x d(GT)8 = d(TTAGGG)4 < dTTAGGGTTAGAG(TTAGGG)2. We demonstrated for the first time that the binding constant of TMPyP3 with the non-quadruplex chain dTTAGGGTTAGAG(TTAGGG)2 (1.3 x 10(7) M(-1)) is approximately 3 times bigger than the binding constant with the quadruplex d(TTAGGG)4 (4.6 x 10(6) M(-1)). Binding of two TMPyP3 molecules to d(TTAGGG)4 led to a decrease of thermostability of the G-quadruplex (deltaT(m) = -8 degrees C). Circular dichroism spectra of TMPyP3:d(TTAGGG)4 complexes revealed a shift of DNA structure from the G-quadruplex to an irregular chain. We hypothesize that partial destabilization of the telomeric G-quadruplex by TMPyP3 might be a reason for relatively low potency of this ligand as a telomerase inhibitor, as well as its marginal cytotoxicity for cultured tumor cells.


Subject(s)
Antineoplastic Agents/chemistry , Oligonucleotides/chemistry , Porphyrins/chemistry , Telomerase/antagonists & inhibitors , Telomere/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Porphyrins/pharmacology , Telomerase/metabolism , Telomere/metabolism
3.
Mol Biol (Mosk) ; 42(4): 693-700, 2008.
Article in Russian | MEDLINE | ID: mdl-18856070

ABSTRACT

Polymorphic d(GT)n microsatellite sequences are known to drastically affect genes expression. By use of CD spectroscopy, UV melting, fluorescence polarization of EtBr probe and FRET, we detected formation of a new fold with three G-quartets by d(GT)12 oligonucleotide in 0.01 M Na phosphate buffer, pH 8.0, in the presence 0.1 M KCl. Monomolecular type of the structure was verified with measurements of rotational relaxation time (p = 28 +/- 0.5 ns) of EtBr:d(GT)12 complex. CD spectra supported G-quartets formation. A distance between FITC, covalently attached to 5'-end of d(GT)12, and intercalated EtBr molecule was estimated using FRET (R < or =17 A). These data are in agreement with the proposed self folding of d(GT)12.


Subject(s)
Microsatellite Repeats , Oligodeoxyribonucleotides/chemistry , Potassium/chemistry , Cations, Monovalent , Circular Dichroism , Nucleic Acid Conformation
4.
Mol Biol (Mosk) ; 40(3): 489-96, 2006.
Article in Russian | MEDLINE | ID: mdl-16813168

ABSTRACT

The complexation of the new protein vector PGEk--a carrier of nucleic acids into proliferating cells with phosphodiester d(TTAGGG)4 (TMO) and phosphorothioate Sd(TTAGGG)4 (TMS) telomerase inhibitor oligonucleotides was studied. PGEk molecule, consisting of 64 amino acids, is comprising the sequence of the human epidermal growth factor EGFh which is hydrophobic cell targeting moiety serving for receptor-mediated endocytosis and an NLS (nuclear localization signal) which is hydrophilic serving as a DNA-binding and selective nuclear import moiety. Experiments were carried out in 0.01 M Na-phosphate buffer contained 0.1 M NaCl, pH 7.8 at 37 degrees C. CD spectral analysis revealed that TMO molecules folded back into intramolecular antiparallel G-quadruplex while TMS molecules were represented as unstructured thread. The number of adsorbed PGEk molecules were estimated using PGEk intrinsic fluorescence decrease and fluorescence polarization increase of PGEk under oligonucleotide titration. Adsorption isotherms were plotted in Scatchard coordinates. We have shown that adsorption of the first two PGEk molecules on TMO and TMS occurs noncooperatively with the high association constants K1(TMO) = (7 +/- 1) x 10(7) M(-1) and K1(TMS) = (3 +/- 0.5) x 10(7) M(-1), respectively. Further adsorption up to 5-6 PGEk molecules on TMO occurrs cooperatively with still high association constant K2(TMO) = (4.0 +/- 1.5) x 10(6) M(-1). TMS oligonucleotide binds the third PGEk molecule rather weakly, K2(TMS) = (8 +/- 2) x 10(5) M(-1). CD spectral analysis revealed that G-quadruplex structure formed by TMO have undergone a partial unfolding by binding of PGEk molecules while single-stranded structure formed by TMS was not affected by binding PGEk. Thus, the tertiary structure of DNA and the number of adsorbed PGEk molecules formed biologically active compounds PGEk: TMO and PGEk: TMS were defined, which are able to penetrate through the membrane of proliferating cells and to suppress their growth.


Subject(s)
Enzyme Inhibitors/chemistry , Epidermal Growth Factor/chemistry , Oligodeoxyribonucleotides/chemistry , Telomerase/antagonists & inhibitors , Telomere/chemistry , Active Transport, Cell Nucleus , Animals , Cell Nucleus , Cell Proliferation , Humans , Protein Structure, Tertiary , Telomerase/chemistry
6.
Nucleosides Nucleotides Nucleic Acids ; 22(5-8): 1499-503, 2003.
Article in English | MEDLINE | ID: mdl-14565452

ABSTRACT

Stretches of parallel-stranded (ps) double-helical DNA can arise within antiparallel-stranded (aps) Watson-Crick DNA in looped structures or in the presence of sequence mismatches. Here we studied an effect of a pyrimidinone-G (PG) base pair on the stability and conformation of the ps DNA to explore whether P is useful as a structural probe.


Subject(s)
Base Pair Mismatch , DNA/chemical synthesis , Deoxyribonucleosides/chemistry , Fluorescent Dyes , Pyrimidinones , Base Pairing , Base Sequence , DNA/chemistry , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oligodeoxyribonucleotides/chemistry , Thermodynamics
7.
Mol Biol (Mosk) ; 37(2): 255-65, 2003.
Article in Russian | MEDLINE | ID: mdl-12723473

ABSTRACT

Noncanonical parallel-stranded DNA double helices (ps-DNA) comprising natural nucleotide sequences are usually second in stability to antiparallel-stranded (aps) canonical DNA structures, which ensures reliable cell functioning. However, recent data indicate a possible role of ps-DNA in DNA loops or in trinucleotide repeats connected with neurodegenerative diseases. The review surveys recent studies on the effect of nucleotide sequence on preference of one or other type of DNA duplex. (1) Ps-DNA with mixed AT/GC composition was found to have conformational and thermodynamic properties drastically different from those of Watson-Crick double helix. Its stability depends strongly on the specific sequence in a manner peculiar to the ps double helix, because of the energy disadvantage of the AT/GC contacts. The AT/GC boundary facilitated flipping of A and T out of the ps double helix. Proton acceptor groups of bases are exposed into the both grooves of the ps-DNA and are accessible to solvent and ligands, including proteins. (2) DNA regions containing natural minor bases isoguanine and isomethylcytosine were shown to form ps-DNA with transAT-, trans isoGC, and trans iso5meCG pairs exceeding in stability a related aps duplex. (3) Nucleotide sequence dG(GT)4G from yeast telomeres and microsatellites was demonstrated to form novel ps-DNA with GG and TT base pairing. Unlike d(GT)n and d(GnTm) sequences able to form quadruplexes, the dG(GT)4G sequence formed no alternative double- or multistranded structures in a wide range of experimental conditions, thus suggesting that the nucleotide context governs the observed structural polymorphism of the d(GT)n sequence. The possible biological role of ps-DNA and the prospects of its study are discussed.


Subject(s)
Base Pairing , DNA/chemistry , Nucleic Acid Conformation , Guanine/chemistry , Nucleic Acid Heteroduplexes/chemistry , Nucleotides/chemistry , Polymorphism, Genetic , Telomere/genetics
8.
Biofizika ; 47(2): 259-67, 2002.
Article in Russian | MEDLINE | ID: mdl-11969162

ABSTRACT

The amino-reactive derivative of tetraphenylporphine meso-tetrakis[4-(carboxy)phenyl]porphine (TCPP) was synthesized, which is characterized by a high molar absorption coefficient (epsilon 416 = 36,500 M-1.cm-1). TCPP was covalently attached to oligonucleotides d(CG)5 [d(CG)5-TCPP] and d(TA)5 [d(TA)5-TCPP]. The spectral characteristics of these complexes were studied in 0.01 M phosphate buffer, pH 7 at 23 degrees C. UV-visible absorption spectra of these complexes have a clearly pronounced Soret band at (414 +/- 1) nm for d(CG)5-TCPP and at (412 +/- 1) nm for d(TA)5-TCPP. The fluorescence spectra of these complexes have maxima at (648 +/- 2) nm for d(CG)5-TCPP and at (658 +/- 2) nm for d(TA)5-TCPP. In this study we also determined fluorescence quantum yields q and fluorescence lifetimes tau [q = 0.099 +/- 0.011, tau = (9.0 +/- 0.3) ns for d(CG)5-TCPP and q = 0.080 +/- 0.011, tau = (8.7 +/- 0.3) ns for d(TA)5-TCPP]. A temperature rise from 5 to 50 degrees C produced only slight (within 23%) emission changes in both samples studied. Taking into account: a) high fluorescence yields (q), b) weak dependence of q on temperature, c) weak q dependence of q on the oligonucleotide type, we conclude that TCPP may be used as a sensitive fluorescence label in DNA studies.


Subject(s)
Fluorescent Dyes/chemistry , Oligodeoxyribonucleotides/chemistry , Porphyrins/chemistry , Fluorescence , Fluorescent Dyes/chemical synthesis , Temperature
9.
Mol Biol (Mosk) ; 35(5): 860-7, 2001.
Article in Russian | MEDLINE | ID: mdl-11605540

ABSTRACT

We showed earlier that oligonucleotides 3'-d(GT)5-pO(CH2CH2O)3p-d(GT)5-3' form bimolecular quadruplexes with parallel orientation of their strands, which are held by guanine quartets alternating with unpaired thymines (GT quadruplex). This work deals with the conformational polymorphism and extensibility of G quadruplexes in complex with molecules of an intercalating agent ethidium bromide (EtBr). A cooperative mechanism of EtBr binding to the GT quadruplex was revealed. The binding constant K = (3.3 +/- 0.1) x 10(4) M-1, cooperativity coefficient omega = 2.5 +/- 0.2, and maximal amount of EtBr molecules intercalated in GT quadruplex (N = 8) were determined. It was proved experimentally by analysis of adsorption isotherms and theoretically by mathematical modeling that the GT quadruplex is capable of double extension, which is indicative of the high elasticity of this four-stranded helix. Two most stable conformations of GT quadruplexes with thymine residues intercalated and/or turned outside were found by mechanico-mathematical modeling. The equilibrium is shifted toward the conformation with the looped out thymine residues upon intercalation of EtBr molecules into the GT quadruplex.


Subject(s)
Nucleic Acid Conformation , Repetitive Sequences, Nucleic Acid , Base Sequence , DNA Primers , Models, Molecular
10.
J Biomol Struct Dyn ; 18(4): 493-501, 503, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11245246

ABSTRACT

Oligonucleotides 3'-d(GTGTGTGTGG)-L-d(GGTGTGTGTG)-3' (hp-GT) and 3'-d(G4STG4TG4STG4STGG)-L-d(GGTGTGTGTG)-3' (hp-SGT), (L=(CH2CH2O)3), were shown by use of several optical techniques to form a novel parallel-stranded (ps) intramolecular double helix with purine-purine and pyrimidine-pyrimidine base pairing. The rotational relaxation time of hp-GT was similar to that of a 10-bp reference duplex, and the fraction of unpaired bases was determined to be approximately 7%, testifying to the formation of an intramolecular double helical hairpin by the sequence under the given experimental conditions. A quasi-two-state mode of ps-double helix formation was validated, yielding a helix-coil transition enthalpy of -135 +/- 5 kJ/mol. The G x G and T x T (or 4ST x T) base pair configurations and conformational parameters of the double helix were derived with molecular modeling by force field techniques. Repetitive d(GT) sequences are abundant in telomers of different genomes and in the regulatory regions of genes. Thus, the observed conformational potential of the repetitive d(GT) sequence may be of importance in the regulation of cell processes.


Subject(s)
Models, Molecular , Repetitive Sequences, Nucleic Acid , Telomere/chemistry , Base Pairing , Circular Dichroism , Ethidium/chemistry , Nucleic Acid Conformation , Oligonucleotides/chemistry , Telomere/genetics , Thermodynamics
11.
Biochemistry ; 39(33): 10034-44, 2000 Aug 22.
Article in English | MEDLINE | ID: mdl-10955991

ABSTRACT

Parallel-stranded (ps) DNAs with mixed AT/GC content comprising G.C pairs in a varying sequence context have been investigated. Oligonucleotides were devised consisting of two 10-nt strands complementary either in a parallel or in an antiparallel orientation and joined via nonnucleotide linkers so as to form 10-bp ps or aps hairpins. A predominance of intramolecular hairpins over intermolecular duplexes was achieved by choice of experimental conditions and verified by fluorescence determinations yielding estimations of rotational relaxation times and fractional base pairing. A multistate mode of ps hairpin melting was revealed by temperature gradient gel electrophoresis (TGGE). The thermal stability of the ps hairpins with mixed AT/GC content depends strongly on the specific sequence in a manner peculiar to the ps double helix. The thermodynamic effects of incorporating trans G.C base pairs into an AT sequence are context-dependent: an isolated G. C base pair destabilizes the duplex whereas a block of > or =2 consecutive G.C base pairs exerts a stabilizing effect. A multistate heterogeneous zipper model for the thermal denaturation of the hairpins was derived and used in a global minimization procedure to compute the thermodynamic parameters of the ps hairpins from experimental melting data. In 0.1 M LiCl at 3 degrees C, the formation of a trans G.C pair in a GG/CC sequence context is approximately 3 kJ mol(-)(1) more favorable than the formation of a trans A.T pair in an AT/TA sequence context. However, GC/AT contacts contribute a substantial unfavorable free energy difference of approximately 2 kJ mol(-)(1). As a consequence, the base composition and fractional distribution of isolated and clustered G.C base pairs determine the overall stability of ps-DNA with mixed AT/GC sequences. Thus, the stability of ps-DNA comprising successive > or =2 G.C base pairs is greater than that of ps-DNA with an alternating AT sequence, whereas increasing the number of AT/GC contacts by isolating G.C base pairs exerts a destabilizing effect on the ps duplex. Molecular modeling of the various helices by force field techniques provides insight into the structural basis for these distinctions.


Subject(s)
DNA/chemistry , Base Composition , Base Pairing , Circular Dichroism , Computer Simulation , Models, Chemical , Models, Molecular , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oligodeoxyribonucleotides/chemistry , Temperature , Thermodynamics
13.
J Biomol Struct Dyn ; 17(4): 655-64, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10698103

ABSTRACT

Oligonucleotides with mixed alpha,beta-anomeric backbone have been proposed recently for the recognition of random DNA sequence via new triplex motif (Doronina and Behr, Chem. Soc. Reviews 26, 63-71 (1997)). In the present work we examined alpha- and beta- anomers of cytidine as possible candidates to recognize AT and TA base pairs of the double stranded DNA. The binding properties of beta-oligo(dC) were studied on a series of synthetic oligodeoxynucleotides by UV absorbtion spectroscopy, measurements of bound EtBr fluorescence polarization, circular dichroism (CD) and non-denaturing gel electrophoresis. The UV thermal denaturation, polarization studies and CD experiments with three stranded oligonucleotide 5'-((dCalpha) (dCbeta))5-L-(dAT)5-L-(dAT)5 (L = triethyleneglycol linker) and other oligonucleotide models showed that the formation of semiprotonated oligocytidilic complexes takes place at low temperatures and neutral pH, rather than folding of the clip into intramolecular triplex. The low-temperature transition was observed in denaturation profiles of any oligonucleotide containing beta- or mixed alpha,beta- cytidine stretches at the concentration of 1 microM. Self-association of alpha,beta-oligo(dC) was additionally confirmed by the appearance of two CD bands (at 290 and 265 nm) characteristic of CC+ base pairs. Despite the effective ability of alpha,beta-oligo(dC) to form self-associates, we succeeded in targeting 30-bp AT containing random DNA duplex by a 30-nt alpha,beta-oligocytidilate as evidenced by non-denaturing gel electrophoresis. A complete binding of the duplex was observed at a 5-fold excess of the third strand at 15 degrees C. Along with the formation of the three-stranded complex, self-association of mixed backbone oligo(dC) strands occurred.


Subject(s)
Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemistry , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Models, Genetic , Nucleic Acid Denaturation , Polymorphism, Genetic , Temperature , Thermodynamics , Ultraviolet Rays
14.
Biochem Mol Biol Int ; 46(2): 333-41, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9801801

ABSTRACT

Quinones caused quenching of Chl a fluorescence in native and model systems. Menadione quenched twofold the fluorescence of Chl a and BChl a in pea chloroplasts, chromatophores of purple bacteria, and liposomes at concentrations of 50-80 microM. To obtain twofold quenching in Triton X-100 micelles and in ethanol, the addition of 1.3 mM and 11 mM menadione was required, respectively. A proportional decrease in the lifetime and yield of Chl a fluorescence in chloroplasts, observed as the menadione concentration increased, is indicative of the efficient excitation energy transfer from bulk Chl to menadione. The decrease in the lifetime and yield of fluorescence was close to proportional in liposomes, but not in detergent micelles. The insensitivity of the menadione quenching effect to DCMU in chloroplasts, and similarity of its action in chloroplasts and liposomes indicate that menadione in chloroplasts interacts with antenna Chl, i.e., nonphotochemical quenching of fluorescence occurs.


Subject(s)
Bacteriochlorophylls/chemistry , Chlorophyll/chemistry , Quinones/pharmacology , Vitamin K/pharmacology , Bacterial Chromatophores/chemistry , Bacteriochlorophylls/metabolism , Benzoquinones/pharmacology , Chlorophyll/metabolism , Chlorophyll A , Chloroplasts/chemistry , Diuron/pharmacology , Fluorescence , Liposomes , Micelles , Pisum sativum , Quinones/metabolism , Rhodobacter sphaeroides , Rhodospirillum rubrum , Spectrometry, Fluorescence , Ubiquinone/pharmacology , Vitamin K/metabolism
17.
FEBS Lett ; 419(1): 27-31, 1997 Dec 08.
Article in English | MEDLINE | ID: mdl-9426213

ABSTRACT

Oligonucleotide-directed triplex formation attracts much attention due to its potential usefulness in diagnostic and biotechnological applications. Among other aspects, the research embraces numerous studies probing the influence of intercalating ligands on triplex stability. The effect of the intercalator on triplex formation and stability is known to depend on nucleotide sequence, type of intercalator and solution conditions. The present work is aimed at determining the average number of intercalated ethidium bromide (EtBr) and acridine orange (AO) molecules leading to the most effective stabilization of triplexes. First, fluorescing complexes of intramolecular parallel (recombinant) triplex 5'-d(CATGCTAACT)-L-d(AGTTAGCATG)-L-d(CATGCTAACT)-3' (parARB) and classical antiparallel 5'-(dA)10-L-(dT)10-L-(dT)10-3'(antiATT) (L = -pO(CH2CH2O)3p-) with EtBr and AO were characterized, binding constants were obtained and compared to those for homologous DNA duplexes. Then the total EtBr and AO concentrations corresponding to an average of one, two or three intercalated molecules per oligonucleotide were estimated. Thermal denaturation of parARB and antiATT complexes with an average of one, two or three bound molecules was carried out, thermodynamic parameters of the triplex-to-duplex and duplex-to-open-strand transitions were evaluated using a three-state model. The ability of EtBr and AO to stabilize or destabilize both parallel (recombinant) and classical antiparallel triplexes was found to depend strongly on the concentration of bound intercalator. The triplexes were shown to be stabilized by intercalation of the first and second EtBr or AO molecules, while binding of the third intercalator molecule to 10 nucleotide long triplex resulted in significant triplex destabilization.


Subject(s)
DNA/chemistry , DNA/drug effects , Intercalating Agents/pharmacology , Acridine Orange/pharmacology , Ethidium/pharmacology , Fluorescent Dyes , Hot Temperature , Kinetics , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oligodeoxyribonucleotides
19.
J Biomol Struct Dyn ; 14(2): 275-83, 1996 Oct.
Article in English | MEDLINE | ID: mdl-8913864

ABSTRACT

We treat theoretically conformational transitions in DNA-ligand complexes allowing for the existence of different binding parameters of the ligand to different DNA conformations. The parameters of binding are determined from the best fit of the theory to experimental data for the difference between transition point (Tm) and the width of transition curve (delta T) for the complexes and for naked DNA. The analysis shows that Ethidium Bromide (EB) and Actinomycin D (AMD) each may form at least five types of complexes: three types (one "strong" and two "weak") with helix DNA and two types ("strong" and "weak") with single-stranded DNA. The parameters of the complexes have been obtained. Some testable experimental predictions of the theory are also discussed.


Subject(s)
DNA, Single-Stranded/chemistry , DNA/chemistry , Mathematical Computing , Models, Molecular , Nucleic Acid Conformation , Binding Sites , DNA/metabolism , DNA, Single-Stranded/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...