Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Protoplasma ; 261(1): 65-75, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37462717

ABSTRACT

Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.e., L-LHCII transition from PSII to PSI, in the leaves of dicotyledonous arabidopsis (Arabidopsis thaliana) than in the leaves of monocotyledonous barley (Hordeum vulgare) plants that was assessed by the measurement of chlorophyll a fluorescence at 77 K and of chlorophyll a fluorescence at room temperature. It is known that the first step of the state 1 to state 2 transition is phosphorylation of Lhcb1 and Lhcb2 proteins; however, we detected no difference in the rate of accumulation of these phosphorylated proteins in the studied plants. Therefore, the parameters, which possibly affect the second step of this transition, i.e., the migration of L-LHCII complexes along the thylakoid membrane, were evaluated. Spin-probe EPR measurements demonstrated that the thylakoid membranes viscosity in arabidopsis was higher compared to that in barley. Moreover, confocal microscopy data evidenced the different size of chloroplasts in the leaves of the studied species being larger in arabidopsis. The obtained results suggest that the observed deference in the development of the state 1 to state 2 transition in arabidopsis and barley is caused by the slower L-LHCII migration rate in arabidopsis than in barley plants rather than by the difference in the Lhcb1 and Lhcb2 phosphorylation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hordeum , Arabidopsis/metabolism , Lighting , Chlorophyll A/metabolism , Light-Harvesting Protein Complexes/metabolism , Arabidopsis Proteins/metabolism , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Phosphorylation , Light
2.
Antioxidants (Basel) ; 12(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38001867

ABSTRACT

Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.

3.
Front Plant Sci ; 12: 662082, 2021.
Article in English | MEDLINE | ID: mdl-34512677

ABSTRACT

We studied bicarbonate-induced stimulation of photophosphorylation in thylakoids isolated from leaves of Arabidopsis thaliana plants. This stimulation was not observed in thylakoids of wild-type in the presence of mafenide, a soluble carbonic anhydrase inhibitor, and was absent in thylakoids of two mutant lines lacking the gene encoding alpha carbonic anhydrase 5 (αCA5). Using mass spectrometry, we revealed the presence of αCA5 in stromal thylakoid membranes of wild-type plants. A possible mechanism of the photophosphorylation stimulation by bicarbonate that involves αCA5 is proposed.

4.
Protoplasma ; 258(2): 249-262, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33118061

ABSTRACT

The review describes the structures of plant carbonic anhydrases (CAs), enzymes catalyzing the interconversion of inorganic carbon forms and belonging to different families, as well as the interaction of inhibitors and activators of CA activity with the active sites of CAs in representatives of these families. We outline the data that shed light on the location of CAs in green cells of C3 plants, algae and angiosperms, with the emphasis on the recently obtained data. The proven and proposed functions of CAs in these organisms are listed. The possibility of the involvement of several chloroplast CAs in acceleration of the conversion of bicarbonate to CO2 and in supply of CO2 for fixation by Rubisco is particularly considered. Special attention is paid to CAs in various parts of thylakoids and to discussion about current knowledge of their possible physiological roles. The review states that, despite the significant progress in application of the mutants with suppressed CAs synthesis, the approach based on the use of the inhibitors of CA activity in some cases remains quite effective. Combination of these two approaches, namely determining the effect of CA activity inhibitors in plants with certain knocked-out CA genes, turns out to be very useful for understanding the functions of other CAs.


Subject(s)
Carbonic Anhydrases/metabolism , Plant Cells/chemistry , Plants/chemistry
5.
Funct Plant Biol ; 47(11): 959-969, 2020 10.
Article in English | MEDLINE | ID: mdl-32564779

ABSTRACT

We investigated acclimatory responses of Arabidopsis plants to drought and salinity conditions before the appearance of obvious signs of damage caused by these factors. We detected changes indicating an increase in the reduction level of the chloroplast plastoquinone pool (PQ pool) 5-7 days after introduction of the stress factors. After 10-14 days, a decrease in the size of PSII light harvesting antenna was observed in plants under conditions of drought and salinity. This was confirmed by a decrease in content of PSII antenna proteins and by downregulation of gene expression levels of these proteins under the stress conditions. No changes in values of performance index and maximum quantum yield of PSII were detected. Under drought and salinity, the content of hydrogen peroxide in leaves was higher than in control leaves. Thus, we propose that reduction of the size of PSII antenna represents one of the universal mechanisms of acclimation of higher plants to stress factors and the downsizing already begins to manifest under mild stress conditions. Both the PQ pool reduction state and the hydrogen peroxide content are important factors needed for the observed rearrangement.


Subject(s)
Arabidopsis , Photosystem II Protein Complex , Acclimatization , Arabidopsis/genetics , Plant Leaves , Plastoquinone
6.
Front Plant Sci ; 11: 211, 2020.
Article in English | MEDLINE | ID: mdl-32231675

ABSTRACT

Recruitment of H2O as the final donor of electrons for light-governed reactions in photosynthesis has been an utmost breakthrough, bursting the evolution of life and leading to the accumulation of O2 molecules in the atmosphere. O2 molecule has a great potential to accept electrons from the components of the photosynthetic electron transfer chain (PETC) (so-called the Mehler reaction). Here we overview the Mehler reaction mechanisms, specifying the changes in the structure of the PETC of oxygenic phototrophs that probably had occurred as the result of evolutionary pressure to minimize the electron flow to O2. These changes are warranted by the fact that the efficient electron flow to O2 would decrease the quantum yield of photosynthesis. Moreover, the reduction of O2 leads to the formation of reactive oxygen species (ROS), namely, the superoxide anion radical and hydrogen peroxide, which cause oxidative stress to plant cells if they are accumulated at a significant amount. From another side, hydrogen peroxide acts as a signaling molecule. We particularly zoom in into the role of photosystem I (PSI) and the plastoquinone (PQ) pool in the Mehler reaction.

7.
Photosynth Res ; 146(1-3): 5-15, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31758403

ABSTRACT

The 10th International Conference on «Photosynthesis and Hydrogen Energy Research for Sustainability-2019¼ was held in honor of Tingyun Kuang (China), Anthony Larkum (Australia), Cesare Marchetti (Italy), and Kimiyuki Satoh (Japan), in St. Petersburg (Russia) during June 23-28, 2019. The official conference organizers from the Russian side were from the Institute of Basic Biological Problems of the Russian Academy of Sciences (IBBP RAS), Russian Society for Photobiology (RSP), and the Komarov Botanical Institute of the Russian Academy of Sciences ([K]BIN RAS). This conference was organized with the help of Monomax Company, a member of the International Congress Convention Association (ICCA), and was supported by the Ministry of Education and Science of the Russian Federation. Here, we provide a brief description of the conference, its scientific program, as well as a brief introduction and key contributions of the four honored scientists. Further, we emphasize the recognition given, at this conference, to several outstanding young researchers, from around the World, for their research in the area of our conference. A special feature of this paper is the inclusion of photographs provided by one of us (Tatsuya Tomo). Lastly, we urge the readers to watch for information on the next 11th conference on "Photosynthesis and Hydrogen Energy Research for Sustainability-2021," to be held in Bulgaria in 2021.


Subject(s)
Conservation of Natural Resources , Photosynthesis , Renewable Energy , Research , Hydrogen/analysis , Oxygen/metabolism
8.
Protoplasma ; 257(2): 489-499, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31784823

ABSTRACT

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 µmol quanta m-2 s-1) or in high light (HL, 400 µmol quanta m-2 s-1). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants. The content of PSII core protein, D1, when adapting to HL, decreased in WT plants and remained unchanged in mutants. This indicates, that the decrease in the content of Lhcb1 and Lhcb2 proteins in HL (Rudenko et al. Protoplasma 55(1):69-78, 2018) in WT plants resulted from decrease of both Photosystem II (PSII) complex content and content of these proteins in this complex, whereas in αCA4-mut plants from the latter process only. The absence of α-CA4 did not affect the rate of electron transport through Photosystem I (PSI) in thylakoids of mutant vs. WT, but led to 50-80% increase in the rate of electron transport from H2O to QA, evidencing the location of α-CA4 close to PSII. The latter difference may raise the question about its causal connection with the difference in the D1 protein content change during adapting to increased illumination in the presence and the absence of α-CA4.


Subject(s)
Carbonic Anhydrases/metabolism , Photosynthesis/physiology , Plant Leaves/chemistry
9.
Physiol Plant ; 166(1): 181-198, 2019 May.
Article in English | MEDLINE | ID: mdl-30706486

ABSTRACT

The review covers data representing the plastoquinone pool as the component integrated in plant antioxidant defense and plant signaling. The main goal of the review is to discuss the evidence describing the plastoquinone-involved biochemical reactions, which are incorporated in maintaining the sustainability of higher plants to stress conditions. In this context, the analysis of the reactions of various redox forms of plastoquinone with oxygen species is presented. The review describes how these reactions can constitute both the antioxidant and signaling functions of the pool. Special attention is paid to the reaction of superoxide anion radicals with plastohydroquinone molecules, producing hydrogen peroxide as signal molecules. Attention is also given to the processes affecting the redox state of the plastoquinone pool because the redox state of the pool is of special importance for antioxidant defense and signaling.


Subject(s)
Plants/metabolism , Plastoquinone/metabolism , Antioxidants/metabolism , Photosynthesis/physiology , Plastoquinone/analogs & derivatives , Superoxides/metabolism
10.
FEBS Lett ; 592(19): 3221-3228, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30179252

ABSTRACT

The plastoquinone (PQ)-pool in chloroplast thylakoid membranes is a key electron carrier in the photosynthetic electron transport chain (PETC), and its redox state plays an essential role in the control of plant metabolism. Oxygen reduction in thylakoid membranes produces superoxide anion radicals ( O 2 · - ), which may react with the PQ-pool. Here, using isolated thylakoids, we show for the first time the oxidation of the PQ-pool by O 2 · - . The xanthine-xanthine oxidase system was used to supply O 2 · - externally to the thylakoid membrane and the redox state of the PQ-pool was monitored by tracking chlorophyll a fluorescence. We propose that, in vivo, the reaction of  O 2 · - produced in Photosystem I with reduced PQ (plastohydroquinone) creates hydrogen peroxide, which serves as a messenger that signals the redox state of the PETC.


Subject(s)
Chloroplasts/metabolism , Plastoquinone/metabolism , Superoxides/metabolism , Thylakoids/metabolism , Oxidation-Reduction , Pisum sativum/metabolism , Plant Leaves/metabolism
11.
Funct Plant Biol ; 45(2): 102-110, 2018 Jan.
Article in English | MEDLINE | ID: mdl-32291025

ABSTRACT

Reduction of O2 molecule to superoxide radical, O2•-, in the photosynthetic electron transport chain is the first step of hydrogen peroxide, H2O2, production in chloroplasts in the light. The mechanisms of O2 reduction by ferredoxin, by the components of the plastoquinone pool, and by the electron transfer cofactors in PSI are analysed. The data indicating that O2•- and H2O2 can be produced both outside and within thylakoid membrane are presented. The H2O2 production in the chloroplast stroma is described as a result of either dismutation of O2•- or its reduction by stromal reductants. Formation of H2O2 within thylakoid membrane in the reaction of O2•- with plastohydroquinone is examined. The significance of both ways of H2O2 formation for specificity of the signal being sent by photosynthetic electron transport chain to cell adaptation systems is discussed.

12.
Physiol Plant ; 161(1): 45-55, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28256000

ABSTRACT

Light-dependent oxygen reduction in the photosynthetic electron transfer chain, i.e. the Mehler reaction, has been studied using isolated pea thylakoids. The role of the plastoquinone pool in the Mehler reaction was investigated in the presence of dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT), the inhibitor of plastohydroquinone oxidation by cytochrome b6/f complex. Oxygen reduction rate in the presence of DNP-INT was higher than in the absence of the inhibitor in low light at pH 6.5 and 7.6, showing that the capacity of the plastoquinone pool to reduce molecular oxygen in this case exceeded that of the entire electron transfer chain. In the presence of DNP-INT, appearance of superoxide anion radicals outside thylakoid membrane represented approximately 60% of the total superoxide anion radicals produced. The remaining 40% of the produced superoxide anion radicals was suggested to be trapped by plastohydroquinone molecules within thylakoid membrane, leading to the formation of hydrogen peroxide (H2 O2 ). To validate the reaction of superoxide anion radical with plastohydroquinone, xanthine/xanthine oxidase system was integrated with thylakoid membrane in order to generate superoxide anion radical in close vicinity of plastohydroquinone. Addition of xanthine/xanthine oxidase to the thylakoid suspension resulted in a decrease in the reduction level of the plastoquinone pool in the light. The obtained data provide additional clarification of the aspects that the plastoquinone pool is involved in both reduction of oxygen to superoxide anion radicals and reduction of superoxide anion radicals to H2 O2 . Significance of the plastoquinone pool involvement in the Mehler reaction for the acclimation of plants to light conditions is discussed.


Subject(s)
Chloroplasts/metabolism , Photosynthesis , Pisum sativum/metabolism , Plastoquinone/metabolism , Chloroplasts/radiation effects , Electron Spin Resonance Spectroscopy , Electron Transport/radiation effects , Hydrogen Peroxide/metabolism , Light , Oxygen Consumption/radiation effects , Pisum sativum/radiation effects , Photosynthesis/radiation effects , Superoxides/metabolism , Thylakoids/metabolism
13.
J Exp Bot ; 66(22): 7151-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26324464

ABSTRACT

Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.


Subject(s)
Acclimatization , Hydrogen Peroxide/metabolism , Light , Photosynthesis/physiology , Photosystem II Protein Complex/metabolism , Signal Transduction , Acclimatization/radiation effects , Hordeum , Photosynthesis/radiation effects , Photosystem II Protein Complex/radiation effects , Plant Leaves/metabolism , Signal Transduction/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...