Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 449: 139189, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38593726

ABSTRACT

Non-enzymatic conversion of phenolic compounds plays an important role during thermal processing of plant-based food such as coffee, cocoa, and peanuts. However, the more prominent Maillard reaction is mainly studied at a mechanistic level for carbohydrates and amino compounds to clarify reactions that contribute to ('classic') melanoidin formation, but the role of phenolic compounds in such reactions is rarely discussed yet. To understand their contribution to non-enzymatic browning, reactions between ubiquitous phenolic acids, such as caffeic acid and ferulic acid, and prominent heterocyclic Maillard intermediates, namely furfural, hydroxymethylfurfural, and pyrrole-2-carbaldehyde were investigated. Following incubation under roasting conditions (220 °C, 0-30 min), heterogenous products were characterized by high-resolution mass spectrometry, and, after isolation, by nuclear magnetic resonance spectroscopy. By this, color precursors were identified, and it was shown that in addition to aromatic electrophilic substitution, nucleophilic and condensation reactions are key mechanisms contributing to the formation of phenol-containing melanoidins.


Subject(s)
Coumaric Acids , Maillard Reaction , Phenols , Coumaric Acids/chemistry , Phenols/chemistry , Hot Temperature , Polymers/chemistry , Coloring Agents/chemistry
2.
Food Chem ; 395: 133592, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-35810628

ABSTRACT

Chemical conversions of reducing sugars and amino compounds induce the formation of heterogenous, high-molecular-weight colorants ('melanoidins') with widely unknown chemical structures. Model experiments of reactive intermediates have proven to be suitable for unravelling the formation mechanisms of colored reaction products. Here, the active methylene norfuraneol was selected and incubated individually as well as in combination with glyoxal, glycolaldehyde, and acetaldehyde at elevated temperatures. Photometric and chromatographic methods as well as mass spectrometry were used to analyze the colored reaction products and reveal the reactivity of different carbonyls regarding the formation of heterogenous oligomers. Aqueous solutions of norfuraneol and glyoxal exceeded the color formation of all other model reaction systems and it could be shown that the initial reactants as well as their degradation products were incorporated into the colorants. The colored oligomers described herein were composed of carbohydrate-based intermediates of the Maillard reaction and defined as melanoidin precursors or pre-melanoidins.


Subject(s)
Carbohydrates , Maillard Reaction , Glyoxal
3.
Food Chem ; 380: 131852, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-34998624

ABSTRACT

In the course of the Maillard reaction, reducing sugars and amino compounds are converted to colorants, whose chemical structures are still mostly unknown. Active methylene compounds like norfuraneol that can initiate aldol condensation reactions are considered as key intermediates in this reaction. The aim of the present study was to characterize color formation of norfuraneol with different carbonyl compounds and to identify the underlying mechanisms of the reaction. Norfuraneol was incubated with methylglyoxal or diacetyl at elevated temperatures and the resulting reaction mixtures were analyzed by means of high-resolution mass spectrometry. It was demonstrated that aldol reactions lead to the formation of heterogeneous carbohydrate-based oligomers, which are likely to contribute to the elevated browning observed in the reaction mixtures. Furthermore, redox reactions were identified as another important part of the reaction, resulting in an increasing number of double bonds in the detected reaction products.


Subject(s)
Aldehydes , Maillard Reaction , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...