Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Comput Struct Biotechnol J ; 21: 3173-3182, 2023.
Article in English | MEDLINE | ID: mdl-37333859

ABSTRACT

Because they mimic cells while offering an accessible and controllable environment, lysate-based cell-free systems (CFS) have emerged as valuable biotechnology tools for synthetic biology. Historically used to uncover fundamental mechanisms of life, CFS are nowadays used for a multitude of purposes, including protein production and prototyping of synthetic circuits. Despite the conservation of fundamental functions in CFS like transcription and translation, RNAs and certain membrane-embedded or membrane-bound proteins of the host cell are lost when preparing the lysate. As a result, CFS largely lack some essential properties of living cells, such as the ability to adapt to changing conditions, to maintain homeostasis and spatial organization. Regardless of the application, shedding light on the black-box of the bacterial lysate is necessary to fully exploit the potential of CFS. Most measurements of the activity of synthetic circuits in CFS and in vivo show significant correlations because these only require processes that are preserved in CFS, like transcription and translation. However, prototyping circuits of higher complexity that require functions that are lost in CFS (cell adaptation, homeostasis, spatial organization) will not show such a good correlation with in vivo conditions. Both for prototyping circuits of higher complexity and for building artificial cells, the cell-free community has developed devices to reconstruct cellular functions. This mini-review compares bacterial CFS to living cells, focusing on functional and cellular process differences and the latest developments in restoring lost functions through complementation of the lysate or device engineering.

2.
Nat Commun ; 11(1): 1872, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312991

ABSTRACT

Lysate-based cell-free systems have become a major platform to study gene expression but batch-to-batch variation makes protein production difficult to predict. Here we describe an active learning approach to explore a combinatorial space of ~4,000,000 cell-free buffer compositions, maximizing protein production and identifying critical parameters involved in cell-free productivity. We also provide a one-step-method to achieve high quality predictions for protein production using minimal experimental effort regardless of the lysate quality.


Subject(s)
Protein Biosynthesis , Proteins/metabolism , Bacteria/metabolism , Cell-Free System , Gene Expression , Machine Learning , Synthetic Biology
3.
ACS Synth Biol ; 8(8): 1952-1957, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31335131

ABSTRACT

Cell-free systems are promising platforms for rapid and high-throughput prototyping of biological parts in metabolic engineering and synthetic biology. One main limitation of cell-free system applications is the low fold repression of transcriptional repressors. Hence, prokaryotic biosensor development, which mostly relies on repressors, is limited. In this study, we demonstrate how to improve these biosensors in cell-free systems by applying a transcription factor (TF)-doped extract, a preincubation strategy with the TF plasmid, or reinitiation of the cell-free reaction (two-step cell-free reaction). We use the optimized biosensor to sense the enzymatic production of a rare sugar, D-psicose. This work provides a methodology to optimize repressor-based systems in cell-free to further increase the potential of cell-free systems for bioproduction.


Subject(s)
Biosensing Techniques/methods , Synthetic Biology/methods , Cell-Free System/metabolism , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Metabolic Engineering/methods , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Curr Opin Biotechnol ; 59: 78-84, 2019 10.
Article in English | MEDLINE | ID: mdl-30921678

ABSTRACT

Transcriptional biosensors allow screening, selection, or dynamic regulation of metabolic pathways, and are, therefore, an enabling technology for faster prototyping of metabolic engineering and sustainable chemistry. Recent advances have been made, allowing for routine use of heterologous transcription factors, and new strategies such as chimeric protein design allow engineers to tap into the reservoir of metabolite-binding proteins. However, extending the sensing scope of biosensors is only the first step, and computational models can help in fine-tuning properties of biosensors for custom-made behavior. Moreover, metabolic engineering is bound to benefit from advances in cell-free expression systems, either for faster prototyping of biosensors or for whole-pathway optimization, making it both a means and an end in biosensor design.


Subject(s)
Biosensing Techniques , Metabolic Engineering , Transcription Factors
5.
Article in English | MEDLINE | ID: mdl-30555825

ABSTRACT

Cell-free TX-TL is an increasingly mature and useful platform for prototyping, testing, and engineering biological parts and systems. However, to fully accomplish the promises of synthetic biology, mathematical models are required to facilitate the design and predict the behavior of biological components in cell-free extracts. We review here the latest models accounting for transcription, translation, competition, and depletion of resources as well as genome scale models for lysate-based cell-free TX-TL systems, including their current limitations. These models will have to find ways to account for batch-to-batch variability before being quantitatively predictive in cell-free lysate-based platforms.

6.
Nat Commun ; 9(1): 1457, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29654285

ABSTRACT

Translating heterologous proteins places significant burden on host cells, consuming expression resources leading to slower cell growth and productivity. Yet predicting the cost of protein production for any given gene is a major challenge, as multiple processes and factors combine to determine translation efficiency. To enable prediction of the cost of gene expression in bacteria, we describe here a standard cell-free lysate assay that provides a relative measure of resource consumption when a protein coding sequence is expressed. These lysate measurements can then be used with a computational model of translation to predict the in vivo burden placed on growing E. coli cells for a variety of proteins of different functions and lengths. Using this approach, we can predict the burden of expressing multigene operons of different designs and differentiate between the fraction of burden related to gene expression compared to action of a metabolic pathway.


Subject(s)
Cell-Free System , Escherichia coli/metabolism , Green Fluorescent Proteins/metabolism , Computer Simulation , DNA, Bacterial/metabolism , Escherichia coli Proteins/metabolism , Gene Library , Models, Genetic , Operon , Plasmids/metabolism , Protein Biosynthesis , Proteomics , RNA, Messenger/metabolism , Software , beta Carotene/metabolism
7.
Nat Methods ; 15(5): 387-393, 2018 05.
Article in English | MEDLINE | ID: mdl-29578536

ABSTRACT

Cells use feedback regulation to ensure robust growth despite fluctuating demands for resources and differing environmental conditions. However, the expression of foreign proteins from engineered constructs is an unnatural burden that cells are not adapted for. Here we combined RNA-seq with an in vivo assay to identify the major transcriptional changes that occur in Escherichia coli when inducible synthetic constructs are expressed. We observed that native promoters related to the heat-shock response activated expression rapidly in response to synthetic expression, regardless of the construct. Using these promoters, we built a dCas9-based feedback-regulation system that automatically adjusts the expression of a synthetic construct in response to burden. Cells equipped with this general-use controller maintained their capacity for native gene expression to ensure robust growth and thus outperformed unregulated cells in terms of protein yield in batch production. This engineered feedback is to our knowledge the first example of a universal, burden-based biomolecular control system and is modular, tunable and portable.


Subject(s)
Escherichia coli/physiology , Gene Expression Regulation, Bacterial/physiology , Synthetic Biology , Escherichia coli/genetics , High-Throughput Nucleotide Sequencing , Plasmids , Promoter Regions, Genetic , Sequence Analysis, RNA , Transcription, Genetic
8.
Curr Opin Microbiol ; 33: 123-130, 2016 10.
Article in English | MEDLINE | ID: mdl-27494248

ABSTRACT

The predictability and robustness of engineered bacteria depend on the many interactions between synthetic constructs and their host cells. Expression from synthetic constructs is an unnatural load for the host that typically reduces growth, triggers stresses and leads to decrease in performance or failure of engineered cells. Work in systems and synthetic biology has now begun to address this through new tools, methods and strategies that characterise and exploit host-construct interactions in bacteria. Focusing on work in E. coli, we review here a selection of the recent developments in this area, highlighting the emerging issues and describing the new solutions that are now making the synthetic biology community consider the cell just as much as they consider the construct.


Subject(s)
Escherichia coli/genetics , Genetic Engineering/methods , Synthetic Biology/methods , DNA, Bacterial/genetics , Escherichia coli/growth & development , Escherichia coli/metabolism , Models, Biological
10.
Mol Syst Biol ; 12(5): 870, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27193784

ABSTRACT

Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production.


Subject(s)
Bacillus subtilis/growth & development , Bacterial Proteins/metabolism , RNA, Messenger/metabolism , Bacillus subtilis/genetics , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Models, Theoretical , Protein Biosynthesis , Proteome/metabolism , RNA, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...