Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Bioinformatics ; 40(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38724240

ABSTRACT

MOTIVATION: High-throughput omics methods increasingly result in large datasets including metabolomics data, which are often difficult to analyse. RESULTS: To help researchers to handle and analyse those datasets by mapping and investigating metabolomics data of multiple sampling conditions (e.g. different time points or treatments) in the context of pathways, PathwayNexus has been developed, which presents the mapping results in a matrix format, allowing users to easily observe the relations between the compounds and the pathways. It also offers functionalities like ranking, sorting, clustering, pathway views, and further analytical tools. Its primary objective is to condense large sets of pathways into smaller, more relevant subsets that align with the specific interests of the user. AVAILABILITY AND IMPLEMENTATION: The methodology presented here is implemented in PathwayNexus, an open-source add-on for Vanted available at www.cls.uni-konstanz.de/software/pathway-nexus. CONTACT: falk.schreiber@unikonstanz.de. SUPPLEMENTARY INFORMATION: Website: www.cls.uni-konstanz.de/software/pathway-nexus.


Subject(s)
Metabolomics , Software , Metabolomics/methods , Metabolic Networks and Pathways
2.
Stud Health Technol Inform ; 302: 1019-1020, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203568

ABSTRACT

Mobile monitoring of outpatients during cancer therapy becomes possible through technological advancements. This study leveraged a new remote patient monitoring app for in-between systemic therapy sessions. Patients' evaluation showed that the handling is feasible. Clinical implementation must consider an adaptive development cycle for reliable operations.


Subject(s)
Mobile Applications , Neoplasms , Humans , Monitoring, Physiologic , Outpatients , Neoplasms/therapy
4.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: mdl-34664389

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology , COVID-19 Drug Treatment
5.
Sci Rep ; 11(1): 10815, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34031452

ABSTRACT

Monitoring and early detection of emerging infectious diseases in wild animals is of crucial global importance, yet reliable ways to measure immune status and responses are lacking for animals in the wild. Here we assess the usefulness of bio-loggers for detecting disease outbreaks in free-living birds and confirm detailed responses using leukocyte composition and large-scale transcriptomics. We simulated natural infections by viral and bacterial pathogens in captive mallards (Anas platyrhynchos), an important natural vector for avian influenza virus. We show that body temperature, heart rate and leukocyte composition change reliably during an acute phase immune response. Using genome-wide gene expression profiling of whole blood across time points we confirm that immunostimulants activate pathogen-specific gene regulatory networks. By reporting immune response related changes in physiological and behavioural traits that can be studied in free-ranging populations, we provide baseline information with importance to the global monitoring of zoonotic diseases.


Subject(s)
Anseriformes/immunology , Gene Expression Profiling/veterinary , Gene Regulatory Networks , Influenza A virus/immunology , Influenza in Birds/diagnosis , Animals , Anseriformes/blood , Anseriformes/genetics , Avian Proteins/genetics , Blood Chemical Analysis , Body Temperature , Computer Simulation , Gene Expression Regulation , Heart Rate , High-Throughput Nucleotide Sequencing , Influenza in Birds/genetics , Influenza in Birds/immunology , Population Surveillance , Sequence Analysis, RNA , Exome Sequencing
6.
J Integr Bioinform ; 16(2)2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31199769

ABSTRACT

The Systems Biology Graphical Notation (SBGN) is an international community effort that aims to standardise the visualisation of pathways and networks for readers with diverse scientific backgrounds as well as to support an efficient and accurate exchange of biological knowledge between disparate research communities, industry, and other players in systems biology. SBGN comprises the three languages Entity Relationship, Activity Flow, and Process Description (PD) to cover biological and biochemical systems at distinct levels of detail. PD is closest to metabolic and regulatory pathways found in biological literature and textbooks. Its well-defined semantics offer a superior precision in expressing biological knowledge. PD represents mechanistic and temporal dependencies of biological interactions and transformations as a graph. Its different types of nodes include entity pools (e.g. metabolites, proteins, genes and complexes) and processes (e.g. reactions, associations and influences). The edges describe relationships between the nodes (e.g. consumption, production, stimulation and inhibition). This document details Level 1 Version 2.0 of the PD specification, including several improvements, in particular: 1) the addition of the equivalence operator, subunit, and annotation glyphs, 2) modification to the usage of submaps, and 3) updates to clarify the use of various glyphs (i.e. multimer, empty set, and state variable).


Subject(s)
Computer Graphics , Models, Biological , Programming Languages , Signal Transduction , Systems Biology
8.
Toxicol Appl Pharmacol ; 354: 64-80, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29278688

ABSTRACT

Developmental neurotoxicity (DNT) may be induced when chemicals disturb a key neurodevelopmental process, and many tests focus on this type of toxicity. Alternatively, DNT may occur when chemicals are cytotoxic only during a specific neurodevelopmental stage. The toxicant sensitivity is affected by the expression of toxicant targets and by resilience factors. Although cellular metabolism plays an important role, little is known how it changes during human neurogenesis, and how potential alterations affect toxicant sensitivity of mature vs. immature neurons. We used immature (d0) and mature (d6) LUHMES cells (dopaminergic human neurons) to provide initial answers to these questions. Transcriptome profiling and characterization of energy metabolism suggested a switch from predominantly glycolytic energy generation to a more pronounced contribution of the tricarboxylic acid cycle (TCA) during neuronal maturation. Therefore, we used pulsed stable isotope-resolved metabolomics (pSIRM) to determine intracellular metabolite pool sizes (concentrations), and isotopically non-stationary 13C-metabolic flux analysis (INST 13C-MFA) to calculate metabolic fluxes. We found that d0 cells mainly use glutamine to fuel the TCA. Furthermore, they rely on extracellular pyruvate to allow continuous growth. This metabolic situation does not allow for mitochondrial or glycolytic spare capacity, i.e. the ability to adapt energy generation to altered needs. Accordingly, neuronal precursor cells displayed a higher sensitivity to several mitochondrial toxicants than mature neurons differentiated from them. In summary, this study shows that precursor cells lose their glutamine dependency during differentiation while they gain flexibility of energy generation and thereby increase their resistance to low concentrations of mitochondrial toxicants.


Subject(s)
Dopaminergic Neurons/drug effects , Energy Metabolism/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurotoxicity Syndromes/etiology , Cells, Cultured , Citric Acid Cycle/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Dose-Response Relationship, Drug , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/drug effects , Glycolysis/drug effects , Humans , Metabolomics/methods , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurotoxicity Syndromes/genetics , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Risk Assessment , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...