Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(24): 16882-16886, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36459616

ABSTRACT

1-Alkynyl triazenes are versatile reagents in synthetic organic chemistry, but the structural diversity of this compound class has so far been limited. Herein, we describe the synthesis of a terminal 1-alkynyl triazene. Subsequent functionalization allows the preparation of 1-alkynyl triazenes with a range of functional groups including esters, alcohols, cyanides, phosphonates, and amides. Furthermore, the terminal 1-alkynyl triazene can be used for the synthesis of di- and triynes and for the preparation of (hetero)aromatic triazenes in metal-catalyzed cyclization reactions.


Subject(s)
Alcohols , Triazenes , Molecular Structure , Cyclization , Triazenes/chemistry , Amides/chemistry
2.
J Am Chem Soc ; 141(26): 10372-10383, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31244170

ABSTRACT

Densely substituted fused aromatic triazenes can be prepared by [2 + 2 + 2] cyclotrimerization reactions of 1-alkynyl triazenes. The Cp*Ru-catalyzed cyclization proceeds well with both simple alkynyl triazenes and tethered 1-diynyl triazenes. Attractively, the methodology can be extended to pyridine synthesis by replacing an alkyne with a nitrile. The reaction is regioselective and yields the sterically more hindered product. The triazene group precisely installed on the synthesized aryl and pyridyl ring is a highly versatile moiety, which is effortlessly converted into the most important and frequently used functional aryl substituents, including fluorides. It is also suited for intramolecular transformations to afford a variety of valuable heterocycles. The coordination chemistry of alkynyl triazenes and Cp*RuCl was studied and led to the structural characterization of a Cp*RuCl(η2-alkyne) complex, a Cp*RuCl(η4-cyclobutadiene) complex, and an unusual dinuclear Ru complex with a bridging tetramethylfulvene ligand. Complexes of this type are potentially involved in catalyst deactivation pathways.

SELECTION OF CITATIONS
SEARCH DETAIL
...