Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22278592

ABSTRACT

SARS-CoV-2 infection can result in the development of a constellation of persistent sequelae following acute disease called post-acute sequelae of COVID-19 (PASC) or Long COVID1-3. Individuals diagnosed with Long COVID frequently report unremitting fatigue, post-exertional malaise, and a variety of cognitive and autonomic dysfunctions1-3; however, the basic biological mechanisms responsible for these debilitating symptoms are unclear. Here, 215 individuals were included in an exploratory, cross-sectional study to perform multi-dimensional immune phenotyping in conjunction with machine learning methods to identify key immunological features distinguishing Long COVID. Marked differences were noted in specific circulating myeloid and lymphocyte populations relative to matched control groups, as well as evidence of elevated humoral responses directed against SARS-CoV-2 among participants with Long COVID. Further, unexpected increases were observed in antibody responses directed against non-SARS-CoV-2 viral pathogens, particularly Epstein-Barr virus. Analysis of circulating immune mediators and various hormones also revealed pronounced differences, with levels of cortisol being uniformly lower among participants with Long COVID relative to matched control groups. Integration of immune phenotyping data into unbiased machine learning models identified significant distinguishing features critical in accurate classification of Long COVID, with decreased levels of cortisol being the most significant individual predictor. These findings will help guide additional studies into the pathobiology of Long COVID and may aid in the future development of objective biomarkers for Long COVID.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-122143

ABSTRACT

The first Indian cases of COVID-19 caused by SARS-Cov-2 were reported in February 29, 2020 with a history of travel from Wuhan, China and so far above 4500 deaths have been attributed to this pandemic. The objectives of this study were to characterize Indian SARS-CoV-2 genome-wide nucleotide variations, trace ancestries using phylogenetic networks and correlate state-wise distribution of viral haplotypes with differences in mortality rates. A total of 305 whole genome sequences from 19 Indian states were downloaded from GISAID. Sequences were aligned using the ancestral Wuhan-Hu genome sequence (NC_045512.2). A total of 633 variants resulting in 388 amino acid substitutions were identified. Allele frequency spectrum, and nucleotide diversity ({pi}) values revealed the presence of higher proportions of low frequency variants and negative Tajimas D values across ORFs indicated the presence of population expansion. Network analysis highlighted the presence of two major clusters of viral haplotypes, namely, clade G with the S:D614G, RdRp: P323L variants and a variant of clade L [Lv] having the RdRp:A97V variant. Clade G genomes were found to be evolving more rapidly into multiple sub-clusters including clade GH and GR and were also found in higher proportions in three states with highest mortality rates namely, Gujarat, Madhya Pradesh and West Bengal.

SELECTION OF CITATIONS
SEARCH DETAIL
...