Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(26): 263601, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38996299

ABSTRACT

We implement and characterize a protocol that enables arbitrary local controls in a dipolar atom array, where the degree of freedom is encoded in a pair of Rydberg states. Our approach relies on a combination of local addressing beams and global microwave fields. Using this method, we directly prepare two different types of three-atom entangled states, including a W state and a state exhibiting finite chirality. We verify the nature of the underlying entanglement by performing quantum state tomography. Finally, leveraging our ability to measure multibasis, multibody observables, we explore the adiabatic preparation of low-energy states in a frustrated geometry consisting of a pair of triangular plaquettes. By using local addressing to tune the symmetry of the initial state, we demonstrate the ability to prepare correlated states distinguished only by correlations of their chirality (a fundamentally six-body observable). Our protocol is generic, allowing for rotations on arbitrary sub-groups of atoms within the array at arbitrary times during the experiment; this extends the scope of capabilities for quantum simulations of the dipolar XY model.

2.
Nature ; 621(7980): 728-733, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37648859

ABSTRACT

The standard quantum limit bounds the precision of measurements that can be achieved by ensembles of uncorrelated particles. Fundamentally, this limit arises from the non-commuting nature of quantum mechanics, leading to the presence of fluctuations often referred to as quantum projection noise. Quantum metrology relies on the use of non-classical states of many-body systems to enhance the precision of measurements beyond the standard quantum limit1,2. To do so, one can reshape the quantum projection noise-a strategy known as squeezing3,4. In the context of many-body spin systems, one typically uses all-to-all interactions (for example, the one-axis twisting model4) between the constituents to generate the structured entanglement characteristic of spin squeezing5. Here we explore the prediction, motivated by recent theoretical work6-10, that short-range interactions-and in particular, the two-dimensional dipolar XY model-can also enable the realization of scalable spin squeezing. Working with a dipolar Rydberg quantum simulator of up to N = 100 atoms, we demonstrate that quench dynamics from a polarized initial state lead to spin squeezing that improves with increasing system size up to a maximum of -3.5 ± 0.3 dB (before correcting for detection errors, or roughly -5 ± 0.3 dB after correction). Finally, we present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by roughly 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions, we demonstrate the ability to extend the lifetime of the squeezed state by freezing its dynamics.

3.
Nature ; 616(7958): 691-695, 2023 04.
Article in English | MEDLINE | ID: mdl-36848931

ABSTRACT

Spontaneous symmetry breaking underlies much of our classification of phases of matter and their associated transitions1-3. The nature of the underlying symmetry being broken determines many of the qualitative properties of the phase; this is illustrated by the case of discrete versus continuous symmetry breaking. Indeed, in contrast to the discrete case, the breaking of a continuous symmetry leads to the emergence of gapless Goldstone modes controlling, for instance, the thermodynamic stability of the ordered phase4,5. Here, we realize a two-dimensional dipolar XY model that shows a continuous spin-rotational symmetry using a programmable Rydberg quantum simulator. We demonstrate the adiabatic preparation of correlated low-temperature states of both the XY ferromagnet and the XY antiferromagnet. In the ferromagnetic case, we characterize the presence of a long-range XY order, a feature prohibited in the absence of long-range dipolar interaction. Our exploration of the many-body physics of XY interactions complements recent works using the Rydberg-blockade mechanism to realize Ising-type interactions showing discrete spin rotation symmetry6-9.

SELECTION OF CITATIONS
SEARCH DETAIL
...