Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 135(1): 39-53, 2005 May.
Article in English | MEDLINE | ID: mdl-15854624

ABSTRACT

In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.


Subject(s)
Cholesterol/chemistry , Crystallization/methods , Lipid Bilayers/chemistry , Membrane Fluidity , Membrane Fusion , Phosphatidylcholines/chemistry , Lipids/chemistry , Molecular Conformation , Phase Transition , Solubility
2.
Chem Phys Lipids ; 130(2): 99-107, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15172826

ABSTRACT

Addition of the local anesthetic tetracaine (TTC) to multilamellar dispersions of natural phosphatidylserine (PS) causes changes in the thermotropic properties of the membrane, which can be detected by differential scanning calorimetry, and in the structure of the membrane as detected by X-ray diffraction. At molar ratio [PS]/ [TTC] approximately 8.5, the melting temperature of the phospholipid shifts downwards by approximately 2.5 degrees C. The melting endotherm is broadened; however, there is little change in the enthalpy of melting. In ternary mixtures (PS-TTC-cholesterol), the thermotropic changes are enhanced. At [PS]/ [TTC] approximately 13, the onset of phase separation of cholesterol crystals from PS in the liquid crystalline state occurs at molar fraction cholesterol (Xchol) approximately 0.28, marginally smaller than that found in the absence of the anesthetic.


Subject(s)
Anesthetics, Local/pharmacology , Cholesterol/chemistry , Phosphatidylserines/chemistry , Tetracaine/pharmacology , Anesthetics, Local/chemistry , Calorimetry, Differential Scanning , Complex Mixtures/chemistry , Molecular Structure , Spectroscopy, Fourier Transform Infrared , Temperature , Tetracaine/chemistry , X-Ray Diffraction
3.
Biochim Biophys Acta ; 1616(2): 196-208, 2003 Oct 13.
Article in English | MEDLINE | ID: mdl-14561477

ABSTRACT

We have studied the properties of mixtures of cholesterol with dioleoylphosphatidylcholine (DOPC), and with several other phospholipids, including 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and dioleoleoylphosphatidylserine (DOPS), as a function of cholesterol molar fraction and of temperature. Mixtures of DOPC with a cholesterol molar fraction of 0.4 or greater display polymorphic behavior. This polymorphism includes the formation of structures that give rise to isotropic peaks in 31P NMR at cholesterol molar fractions between 0.4 and 0.6, dependent on the thermal history of the sample. Cryo-electron microscopy studies demonstrate the formation of small globular aggregates that would contribute to a narrowing of the 31P NMR powder pattern. At molar fraction cholesterol 0.6 and higher and at temperatures above 70 degrees C, the mixtures with DOPC convert to the hexagonal phase. Lipid polymorphism is accompanied by the phase separation of cholesterol crystals in the anhydrous form and/or the monohydrate form. The crystals that are formed have substantially altered kinetics of hydration and dehydration, compared with both pure cholesterol monohydrate crystals and with crystals formed in the presence of the other phospholipids that do not form the hexagonal phase in the presence of cholesterol. This fact demonstrates that these cholesterol crystals are in intimate contact with the DOPC phospholipid and are not present as morphologically separate structures.


Subject(s)
Cholesterol/chemistry , Phosphatidylcholines/chemistry , Calorimetry, Differential Scanning , Microscopy, Electron , Nuclear Magnetic Resonance, Biomolecular , Thermodynamics , X-Ray Diffraction
4.
Biopolymers ; 20(1): 231-235, 1981 Jan.
Article in English | MEDLINE | ID: mdl-33327671
SELECTION OF CITATIONS
SEARCH DETAIL
...