Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chemosphere ; 363: 142974, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39084301

ABSTRACT

The prevalent presence of pharmaceuticals in aquatic ecosystems underscores the necessity for developing cost-effective techniques to remove them from water. The utilization of affordable precursors in producing activated carbon, capable of rivaling commercial alternatives, remains a persistent challenge. The adsorption of diclofenac and ciprofloxacin onto a novel pinewood-derived activated carbon (FPWAC) was explored, employing a sequential activation process involving ammonium nitrate (NH4NO3) treatment followed by sodium hydroxide (NaOH) activation. The produced FPWAC was then thoroughly characterized by employing several techniques. The removal of diclofenac and ciprofloxacin in water and real wastewater effluent was examined in batch tests. The optimum removal conditions were an FPWAC dosage of 1 g L-1, pH 6, mixture concentration of 25 mg L-1, and a temperature of 25 °C. The FPWAC was able to remove both pharmaceuticals for up to six cycles, with more than 95% removal for water and 90% for wastewater in the first cycle. The adsorption performance fitted well with the non-linear Freundlich isotherm for both pollutants. The kinetics of adsorption of diclofenac followed a pseudo-first-order model, while ciprofloxacin showed adherence to the pseudo-second-order model. FPWAC proved its potency as a low-cost adsorbent for pharmaceutical removal from wastewater.


Subject(s)
Ciprofloxacin , Diclofenac , Wastewater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/analysis , Wastewater/chemistry , Diclofenac/chemistry , Diclofenac/isolation & purification , Diclofenac/analysis , Adsorption , Ciprofloxacin/chemistry , Ciprofloxacin/isolation & purification , Ciprofloxacin/analysis , Water Purification/methods , Waste Disposal, Fluid/methods , Pinus/chemistry , Charcoal/chemistry , Wood/chemistry , Kinetics , Hydrogen-Ion Concentration
2.
Materials (Basel) ; 16(11)2023 May 30.
Article in English | MEDLINE | ID: mdl-37297199

ABSTRACT

Nowadays, the construction industry is challenged not only by increasingly strict environmental regulations, but also by a shortage of raw materials and additives. It is critical to find new sources with which the circular economy and zero waste approach can be achieved. Promising candidates are alkali activated cements (AAC), which offer the potential to convert industrial wastes into higher added value products. The aim of the present research is to develop waste-based AAC foams with thermal insulation properties. During the experiments, pozzolanic materials (blast furnace slag, fly ash, and metakaolin) and waste concrete powder were used to produce first dense and then foamed structural materials. The effects of the concrete fractions, the relative proportions of each fraction, the liquid/solid ratio, and the amount of foaming agents on the physical properties were investigated. A correlation between macroscopic properties (strength, porosity, and thermal conductivity) and micro/macro structure was examined. It was found that concrete waste itself is suitable for the production of AACs, but when combined with other aluminosilicate source, the strength can be increased from 10 MPa up to 47 MPa. The thermal conductivity (0.049 W/mK) of the produced non-flammable foams is comparable to commercially available insulating materials.

3.
Materials (Basel) ; 14(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34640211

ABSTRACT

Nowadays, global warming and the ensuing climate change are one of the biggest problems for humanity, but environmental pollution and the low ratio of waste management and recycling are not negligible issues, either. By producing alkali-activated cements (AACs), it is possible to find an alternative way to handle the above-mentioned environmental problems. First, with a view to optimizing experimental parameters, metakaolin-based AACs were prepared, and in it, waste tire rubber was used as sand replacement (5-45 wt %). Insufficient wetting between the rubber particles and the matrix was corrected through different surface treatments of the rubber. For improving the mechanical/strength properties of the specimens, fibrous waste kaolin wool (0.5-1.5 wt %) was added to the AAC matrix. Considering the results of model experiments with metakaolin, blast-furnace-slag-based AAC composites were developed. The effects of storage conditions, specimen size and cyclic loading on the compressive strength were investigated, and the resulting figures were compared with the relevant values of classic binders. The strength (44.0 MPa) of the waste-based AAC composite significantly exceeds the required value (32.5 MPa) of clinker saving slag cement. Furthermore, following cyclic compressive loading, the residual strength of the waste-based AAC composite shows a slight increase rather than a decrease.

SELECTION OF CITATIONS
SEARCH DETAIL