Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(9): 2444, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38595213

ABSTRACT

Correction for 'ECM-based bioadhesive hydrogel for sutureless repair of deep anterior corneal defects' by Safieh Boroumand et al., Biomater. Sci., 2024, https://doi.org/10.1039/d4bm00129j.

2.
Int J Biol Macromol ; 260(Pt 2): 129633, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253146

ABSTRACT

Here, mitochondria were isolated from mesenchymal stem cells (MSCs) after being treated with mitochondria-stimulating substrates, 50 µM metformin (Met), and 40 µM dichloroacetic acid (DCA). The isolated mitochondria (2 × 107 particles) were characterized and encapsulated inside 100 µl hydrogel composed of alginate (3 % w/v; Alg)/gelatin (Gel; 1 % w/v) enriched with 1 µM pyrrole (Pyr) solidified in the presence of 0.2 M FeCl3. The physicochemical properties and cytocompatibility of prepared hydrogels were assessed using FTIR, swelling, biodegradation, porosity assays, and scanning electron microscopy (SEM). The mitochondria-bearing hydrogel was injected into the ischemic area of rat hearts. FTIR absorption bands represented that the addition of FeCl3 led to polypyrrole (PPy) formation, polysaccharide oxidation, and interaction between Alg and Gel. SEM images exhibited porous structure and the size of pores was reduced in Alg/Gel + PPy group compared to Alg + PPy hydrogel. Based on the data, both Alg + PPy and Alg/Gel + PPy hydrogels can preserve the integrity and morphology of loaded mitochondria. It was noted that Alg/Gel + PPy hydrogel possessed a higher swelling ratio, degradation, and porosity compared to Alg + PPy group. Data confirmed that Alg/Gel + PPy hydrogel containing 1 µM Pyr yielded the highest survival rate compared to groups with 2 and 4 µM Pyr (p < 0.05). Injection of mitochondria-loaded Alg/Gel + PPy hydrogel yielded significant restoration of left ventricle thickness compared to the infarction, mitochondria, and Alg/Gel + PPy hydrogel groups 14 days post-injection (p < 0.05). Histological analyses revealed a significant increase of vWF+ capillaries and α-SMA+ arterioles in the mitochondria-loaded Alg/Gel + PPy hydrogel group (p < 0.05). Immunofluorescence imaging revealed the ability of rat cardiomyocytes to uptake mitochondria alone or after being loaded into Alg/Gel + PPy hydrogel. These effects were evident in the Alg/Gel + PPy group. Taken together, electroconductive Alg-based hydrogels are suitable platforms for the transplantation of cells and organelles and the regeneration of ischemic heart changes.


Subject(s)
Alginates , Chlorides , Ferric Compounds , Myocardial Infarction , Rats , Animals , Alginates/chemistry , Polymers/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Angiogenesis , Pyrroles/chemistry , Myocardial Infarction/drug therapy , Mitochondria
3.
Environ Sci Pollut Res Int ; 31(2): 2360-2376, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38063966

ABSTRACT

The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 µm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.


Subject(s)
Influenza A Virus, H1N1 Subtype , Nanofibers , Nanoparticles , Selenium , Virus Diseases , Animals , Dogs , Humans , Selenium/pharmacology , Nanofibers/chemistry , Escherichia coli , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Nanoparticles/chemistry , Antiviral Agents/pharmacology
4.
IEEE Trans Nanobioscience ; 22(3): 685-701, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35724284

ABSTRACT

Recent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed. The emergence of nanofibers in the industry has since introduced a next generation of respiratory masks that promises improved filtration efficiency and breathability via nanometric pores and thin fiber thickness. In addition, the surface of nanofibers can be functionalized and enhanced to capture specific particles. In addition to conventional techniques such as melt-blown, respiratory masks by nanofibers have provided an opportunity to prevent pathogen transmission. As the surge in global demand for respiratory masks increases, herein, we reviewed recent advancement of nanofibers as an alternative technique to be used in respiratory mask production.


Subject(s)
COVID-19 , Nanofibers , Humans , COVID-19/prevention & control , Masks , Filtration
5.
Environ Sci Pollut Res Int ; 29(53): 80411-80421, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35716305

ABSTRACT

As the world battles with the outbreak of the novel coronavirus, it also prepares for future global pandemics that threaten our health, economy, and survivor. During the outbreak, it became evident that use of personal protective equipment (PPE), specially face masks, can significantly slow the otherwise uncontrolled spread of the virus. Nevertheless, the outbreak and its new variants have caused shortage of PPE in many regions of the world. In addition, waste management of the enormous economical and environmental footprint of single use PPE has proven to be a challenge. Therefore, this study advances the theme of decontaminating used masks. More specifically, the effect of various decontamination techniques on the integrity and functionality of nanofiber-based N95 masks (i.e. capable of at least filtering 95% of 0.3 µm aerosols) were examined. These techniques include 70% ethanol, bleaching, boiling, steaming, ironing as well as placement in autoclave, oven, and exposure to microwave (MW) and ultraviolet (UV) light. Herein, filtration efficiency (by Particle Filtration Efficiency equipment), general morphology, and microstructure of nanofibers (by Field Emission Scanning Electron microscopy) prior and after every decontamination technique were observed. The results suggest that decontamination of masks with 70% ethanol can lead to significant unfavorable changes in the microstructure and filtration efficiency (down to 57.33%) of the masks. In other techniques such as bleaching, boiling, steaming, ironing and placement in the oven, filtration efficiency dropped to only about 80% and in addition, some morphological changes in the nanofiber microstructure were seen. Expectedly, there was no significant reduction in filtration efficiency nor microstructural changes in the case of placement in autoclave and exposure to the UV light. It was concluded that, the latter methods are preferable to decontaminate nanofiber-based N95 masks.


Subject(s)
COVID-19 , Nanofibers , Humans , N95 Respirators , Decontamination/methods , Respiratory Aerosols and Droplets , Steam , Ethanol
6.
J Tehran Heart Cent ; 16(1): 38-41, 2021 Jan.
Article in English | MEDLINE | ID: mdl-35082867

ABSTRACT

Open total arch replacement is allied to high rates of mortality and morbidity; surgeons, therefore, tend to choose hybrid aortic arch repair as a less invasive operative procedure for the treatment of aortic arch aneurysms, especially in high-risk patients. However, studies on the early and late outcomes of patients undergoing hybrid aortic arch repair have revealed high rates of reintervention and reoperation compared with open total arch replacement. Here, we describe a male patient with late retrograde aortic dissection after hybrid thoracic endovascular aortic repair for aortic arch aneurysms. The patient returned 3 years after the procedure with signs of dyspnea on exertion and chest pain. Transthoracic echocardiography and computed tomography showed dissection of the ascending aorta, for which he underwent a redo Bentall procedure. The patient was weaned from cardiopulmonary bypass without any problem and discharged after 7 days.

7.
Iran J Pharm Res ; 20(4): 467-496, 2021.
Article in English | MEDLINE | ID: mdl-35194460

ABSTRACT

Heart failure (HF) is one of the most important cardiovascular diseases (CVD), causing many die every year. Cardiac tissue engineering is a multidisciplinary field for creating functional tissues to improve the cardiac function of the damaged heart and get hope for end-stage patients. Recent works have focused on creating engineered cardiac tissue ex-vivo. Simultaneously, new approaches are used to study ways of induction of regeneration in the damaged heart after injury. The heart as a complex physiological pump consists of many cells such as cardiomyocytes (80-90% of the heart volume). These cardiomyocytes are elongated, aligned, and have beating properties. To create the heart muscle, which should be functional, soft and elastic scaffolds are required to resemble the native heart tissue. These mechanical characteristics are not compatible with all materials and should be well selected. Some scaffolds promote the viability and differentiation of stem cells. Each material has advantages and disadvantages with relevant influence behavior for cells. In this review, we present an overview of the general approaches developed to generate functional cardiac tissues, discussing the different cell sources, biomaterials, pharmacological agents, and engineering strategies in this manner. Moreover, we discuss the main challenges in cardiac tissue engineering that cause difficulties to construct heart muscle. We trust that researchers interested in developing cardiac tissue engineering will find the information reviewed here useful. Furthermore, we think that providing a unified framework will further the development of human engineered cardiac tissue constructs.

8.
J Mater Sci Mater Med ; 31(1): 8, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31838602

ABSTRACT

Endometriosis is a common, chronic gynecological disorder associated with ongoing pelvic pain, infertility, and adhesions in reproductive age women. Current therapeutic strategies are not effective and the recurrent nature of endometriosis makes it difficult to treat. In this study, we have designed a drug delivery system to control sustained and prolonged release of curcumin in the peritoneum and pelvic cavity of a mouse model of endometriosis. Poly ε-Caprolactone (PCL) and poly ethylene glycol (PEG) polymers were used to synthesize curcumin loaded nanofibers. After scanning electron microscopy (SEM) observation of the nanofiber's morphology, we evaluated the drug release profile and in vitro degradation rate of the curcumin-loaded nanofibers. Next, we tested these nanofibers in vivo in the peritoneum of an endometriosis mouse model to determine their anti-endometriosis effects. Histological evaluations were also performed. Curcumin loaded nanofibers were successfully synthesized in the 8 and 10 wt% polymers. The release test of the curcumin-loaded nanofibers showed that approximately 23% of the loaded curcumin was released during 30 min, 35% at 24 h, and 50% at 30 days. Endometriosis was successfully induced in Balb/c mice, as noted by the observed characteristics of endometriosis in all of the mice and confirmation of endometriosis by hematoxylin and eosin (H&E) staining. In vivo experiments showed the ability of these implanted curcumin loaded nanofibers to mitigate endometriosis. We observed a considerable reduction in the endometrial glands and stroma, along with significant reduction in infiltration of inflammatory cells. Implantable curcumin loaded nanofibers successfully mitigated intraperitoneal endometriosis.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Curcumin/chemistry , Curcumin/therapeutic use , Endometriosis/drug therapy , Nanofibers/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Curcumin/administration & dosage , Dosage Forms , Drug Delivery Systems , Electrochemical Techniques , Female , Mice , Mice, Inbred BALB C , Molecular Structure
9.
Regen Med ; 13(1): 41-54, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29360011

ABSTRACT

Despite recent advances in medicine and surgery, many people still suffer from cardiovascular diseases, which affect their life span and morbidity. Regenerative medicine and tissue engineering are novel approaches based on restoring or replacing injured tissues and organs with scaffolds, cells and growth factors. Scaffolds are acquired from two major sources, synthetic materials and naturally derived scaffolds. Biological scaffolds derived from native tissues and cell-derived matrix offer many advantages. They are more biocompatible with a higher affinity to cells, which facilitate tissue reconstruction. Interestingly, xenogeneic recipients generally tolerate their components. Therefore, heart valve tissue engineering is increasingly benefiting from naturally derived scaffolds. In this review, we investigated the different protocols and methods that have been used for heart valve decellularization.


Subject(s)
Bioprosthesis , Heart Valve Prosthesis , Tissue Engineering/methods , Tissue Scaffolds , Animals , Humans , Tissue Engineering/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...