Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Skeletal Radiol ; 51(7): 1415-1423, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34970704

ABSTRACT

OBJECTIVE: To assess the ability of a newly developed AI-powered ultrasound 3D hand scanner to visualize joint structures in healthy hands and detect degenerative changes in cadaveric hands. MATERIALS AND METHODS: Twelve individuals (6 males, 6 females, age 43.5 ± 17.8 years) underwent four scans with the 3D ultrasound tomograph (right and left hand, dorsal and palmar, respectively) as well as four sets of handheld ultrasound of predefined anatomic regions. The 3D ultrasound tomographic images and the standard handheld ultrasound images were assessed by two radiologists with regard to visibility of bone contour, joint capsule and space, and tendons. In addition, three cadaveric hands were scanned with the 3D ultrasound tomograph and CT. RESULTS: Mean scan time for both hands was significantly faster with handheld ultrasound (10 min 30 s ± 95 s) compared to 3D ultrasound tomography (32 min 9 s ± 6 s; p < 0.001). Interreader and intermodality agreement was moderate (0.4 < κ ≤ 0.6) to substantial (0.6 < κ ≤ 0.8). Overall visibility of joint structures was comparable between the modalities at the level of the wrist (p = 0.408), and significantly better with handheld ultrasound at the level of the finger joints and the thumb (both p < 0.001). The 3D ultrasound tomograph was able to detect osteophytes in cadaveric hands which were confirmed by CT. CONCLUSION: The AI-powered 3D ultrasound tomograph was able to visualize joint structures in healthy hands and singular osteophytes in cadaveric hands. Further technical improvements are necessary to shorten scan times and improve automated scanning of the finger joints and the thumb.


Subject(s)
Osteophyte , Adult , Artificial Intelligence , Cadaver , Female , Humans , Male , Middle Aged , Tomography, X-Ray Computed , Ultrasonography
2.
Eur Phys J C Part Fields ; 78(7): 576, 2018.
Article in English | MEDLINE | ID: mdl-30393462

ABSTRACT

Higher-order corrections to the MSSM Higgs-boson masses are desirable for accurate predictions currently testable at the LHC. By comparing the prediction with the measured value of the discovered Higgs signal, viable parameter regions can be inferred. For an improved theory accuracy, we compute all two-loop corrections involving the strong coupling for the Higgs-boson mass spectrum of the MSSM with complex parameters. Apart from the dependence on the strong coupling, these contributions depend on the weak coupling and Yukawa couplings, leading to terms of  O α α s and  O α q 1 α q 2 α s , ( q 1 , 2 = t , b , c , s , u , d ). The full dependence on the external momentum and all relevant mass scales is taken into account. The calculation is performed in the Feynman-diagrammatic approach which is flexible in the choice of the employed renormalization scheme. For the phenomenological results presented here, a renormalization scheme consistent with higher-order corrections included in the code FeynHiggs is adopted. For the evaluation of the results, a total of 513 two-loop two-point integrals with up to five different mass scales are computed fully numerically using the program SecDec. A comparison with existing results in the limit of real parameters and/or vanishing external momentum is carried out, and the impact on the lightest Higgs-boson mass is discussed, including the dependence on complex phases. The new results will be included in the public code FeynHiggs.

SELECTION OF CITATIONS
SEARCH DETAIL
...