Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Behav Neurosci ; 11: 74, 2017.
Article in English | MEDLINE | ID: mdl-28491027

ABSTRACT

Operant extinction is learning to supress a previously rewarded behavior. It is known to be strongly associated with the specific context in which it was acquired, which limits the therapeutic use of operant extinction in behavioral treatments, e.g., of addiction. We examined whether sleep influences contextual memory of operant extinction over time, using two different recall tests (Recent and Remote). Rats were trained in an operant conditioning task (lever press) in context A, then underwent extinction training in context B, followed by a 3-h retention period that contained either spontaneous morning sleep, morning sleep deprivation, or spontaneous evening wakefulness. A recall test was performed either immediately after the 3-h experimental retention period (Recent recall) or after 48 h (Remote), in the extinction context B and in a novel context C. The two main findings were: (i) at the Recent recall test, sleep in comparison with sleep deprivation and spontaneous wakefulness enhanced extinction memory but, only in the extinction context B; (ii) at the Remote recall, extinction performance after sleep was enhanced in both contexts B and C to an extent comparable to levels at Recent recall in context B. Interestingly, extinction performance at Remote recall was also improved in the sleep deprivation groups in both contexts, with no difference to performance in the sleep group. Our results suggest that 3 h of post-learning sleep transiently facilitate the context specificity of operant extinction at a Recent recall. However, the improvement and contextual generalization of operant extinction memory observed in the long-term, i.e., after 48 h, does not require immediate post-learning sleep.

2.
Exp Brain Res ; 232(5): 1469-77, 2014 May.
Article in English | MEDLINE | ID: mdl-24322821

ABSTRACT

Sleep supports the consolidation of memory, and it has been proposed that this enhancing effect of sleep pertains in particular to memories which are encoded under control of prefrontal-hippocampal circuitry into an episodic memory system. Furthermore, repeated reactivation and transformation of such memories during sleep are thought to promote the de-contextualization of these memories. Here, we aimed to establish a behavioral model for the study of such sleep-dependent system consolidation in rats, using a go/nogo conditional discrimination learning task known to essentially depend on prefrontal-hippocampal function. Different groups of rats were trained to criterion on this task and, then, subjected to 80-min retention intervals filled with spontaneous morning sleep, sleep deprivation, or spontaneous evening wakefulness. In a subsequent test phase, the speed of relearning of the discrimination task was examined as indicator of memory, whereby rats were either tested in the same context as during training or in a different context. Sleep promoted relearning of the conditional discrimination task, and this effect was similar for testing memory in the same or different context (p < 0.001). Independent of sleep and wakefulness during the retention interval, animals showed faster relearning when tested in the same context as during learning, compared with testing in a different context (p < 0.001). The benefitting effect of sleep on discrimination learning was primarily due to an enhancing effect on response suppression during the nogo stimulus. We infer from these results that sleep enhances memory for inhibitory behavioral control in a generalized context-independent manner and thereby might eventually also contribute to the abstraction of schema-like representations.


Subject(s)
Discrimination Learning/physiology , Inhibition, Psychological , Retention, Psychology/physiology , Sleep/physiology , Analysis of Variance , Animals , Choice Behavior/physiology , Conditioning, Operant/physiology , Electroencephalography , Electromyography , Male , Rats , Rats, Sprague-Dawley , Sleep Deprivation/physiopathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...