Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Plant Mol Biol ; 113(1-3): 89-103, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37702897

ABSTRACT

Seed storage compound deposition is influenced by both maternal and filial tissues. Within this framework, we analyzed strategies that operate during the development and filling of soybean embryos, using in vitro culture systems combined with metabolomics and proteomics approaches. The carbon:nitrogen ratio (C:N) of the maternal supply and the hormone abscisic acid (ABA) are specific and interacting signals inducing differential metabolic reprogrammings linked to changes in the accumulation of storage macromolecules like proteins or oils. Differences in the abundance of sugars, amino acids, enzymes, transporters, transcription factors, and proteins involved in signaling were detected. Embryos adapted to the nutritional status by enhancing the metabolism of both carbon and nitrogen under lower C:N ratio condition or only carbon under higher C:N ratio condition. ABA turned off multiple pathways especially in high availability of amino acids, prioritizing the storage compounds biosynthesis. Common responses induced by ABA involved increased sucrose uptake (to increase the sink force) and oleosin (oil body structural component) accumulation. In turn, ABA differentially promoted protein degradation under lower nitrogen supply in order to sustain the metabolic demands. Further, the operation of a citrate shuttle was suggested by transcript quantification and enzymatic activity measurements. The results obtained are useful to help define biotechnological tools and technological approaches to improve oil and protein yields, with direct impact on human and animal nutrition as well as in green chemistry.

2.
Plant Cell Environ ; 46(7): 2128-2141, 2023 07.
Article in English | MEDLINE | ID: mdl-37066607

ABSTRACT

Chilling can decrease stomatal sensitivity to abscisic acid (ABA) in some legumes, although hormonal mechanisms involved are unclear. After evaluating leaf gas exchange of 16 European soybean genotypes at 14°C, 6 genotypes representing the range of response were selected. Further experiments combined low (L, 14°C) and high (H, 24°C) temperature exposure from sowing until the unifoliate leaf was visible and L or H temperature until full leaf expansion, to impose four temperature treatments: LL, LH, HL, and HH. Prolonged chilling (LL) substantially decreased leaf water content but increased leaf ethylene evolution and foliar concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, indole-3-acetic acid, ABA and jasmonic acid. Across genotypes, photosynthesis linearly increased with stomatal conductance (Gs), with photosynthesis of HH plants threefold higher than LL plants at the same Gs. In all treatments except LL, Gs declined with foliar ABA accumulation. Foliar ABA sprays substantially decreased Gs of HH plants, but did not significantly affect LL plants. Thus low temperature compromised stomatal sensitivity to endogenous and exogenous ABA. Applying the ethylene antagonist 1 methyl-cyclopropene partially reverted excessive stomatal opening of LL plants. Thus, chilling-induced ethylene accumulation may mediate stomatal insensitivity to ABA, offering chemical opportunities for improving seedling survival in cold environments.


Subject(s)
Abscisic Acid , Glycine max , Abscisic Acid/pharmacology , Temperature , Ethylenes/pharmacology , Plants
3.
J Exp Bot ; 73(16): 5503-5513, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35640591

ABSTRACT

In the absence of stress, crop growth depends on the amount of light intercepted by the canopy and the conversion efficiency [radiation use efficiency (RUE)]. This study tested the hypothesis that long-term genetic gain for grain yield was partly due to improved RUE. The hypothesis was tested using 30 elite maize hybrids commercialized in the US corn belt between 1930 and 2017. Crops grown under irrigation showed that pre-flowering crop growth increased at a rate of 0.11 g m-2 year-1, while light interception remained constant. Therefore, RUE increased at a rate of 0.0049 g MJ-1 year-1, translating into an average of 3 g m-2 year-1 of grain yield over 100 years of maize breeding. Considering that the harvest index has not changed for crops grown at optimal density for the hybrid, the cumulative RUE increase over the history of commercial maize breeding in the USA can account for ~32% of the documented yield trend for maize grown in the central US corn belt. The remaining RUE gap between this study and theoretical maximum values suggests that a yield improvement of a similar magnitude could be achieved by further increasing RUE.


Subject(s)
Plant Breeding , Zea mays , Crops, Agricultural/genetics , Zea mays/genetics
4.
Food Chem ; 369: 130953, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34500211

ABSTRACT

Maize starch is an important carbohydrate source in human diet, and its digestion contributes to the postprandial blood glucose level. This article describes in vitro starch digestibility and its relation to endosperm hardness and composition in cooked maize flours. Starch digestion and estimated glycemic index (GI) were significantly (p < 0.05) lower in hard endosperm genotypes (65.1 and 77.3, respectively) than in soft ones (70.7 and 80.7, respectively), and they were negatively correlated (p < 0.05) with specific zein concentrations (total zeins, Z1, Z2, and C1, E, and F zeins). Cooking with sodium sulfite significantly (p < 0.001) increased starch hydrolysis in all genotypes (∼13%), evidencing the impact of disulfide bonds on this attribute. Explored amylose:starch ratios did not impact starch digestibility. Regardless of hardness, fine grinding significantly (p < 0.001) increased total starch digestibility in >30%. Our results focus on specific kernel physicochemical traits for developing maize food products with lower starch digestibility and GI.


Subject(s)
Flour , Starch , Cooking , Digestion , Flour/analysis , Glycemic Index , Humans , Zea mays
5.
Front Plant Sci ; 12: 771739, 2021.
Article in English | MEDLINE | ID: mdl-35111174

ABSTRACT

Altered stand density affects maize yields by producing changes in both numerical yield components, kernel number per plant (KNP), and kernel weight (KW). Kernel number is determined by the accumulation of ear biomass during the flowering period, whereas KW is determined by the sink potential established during flowering and the capacity of the plant to fulfill this potential during effective grain filling. Here, we tested if different short shading treatments during different stages around flowering can help discriminate genotypic differences in eco-physiological parameters relevant for maize stand density yield response and associated yield components. Our specific objectives were to: (i) identify hybrids with differential shading stress response, (ii) explore shading effects over eco-physiological parameters mechanistically related to KNP and KW, and (iii) test if shading stress can be used for detecting differential genotypic yield responses to stand density. The objectives were tested using four commercial maize hybrids. Results indicated that KNP was the yield component most related to yield changes across the different shading treatments, and that the specific shading imposed soon after anthesis generated the highest yield reductions. Hybrids less sensitive to shading stress were those that reduced their plant growth rate the least and the ones that accumulated more ear biomass during flowering. Genotype susceptibility to shading stress around flowering was correlated to stand density responses. This indicated that specific shading stress treatments are a useful tool to phenotype for differential stand density responses of commercial hybrids.

6.
Front Plant Sci ; 11: 937, 2020.
Article in English | MEDLINE | ID: mdl-32670330

ABSTRACT

Nonstructural carbohydrates in cereals have been widely investigated from physiological, genetic, and breeding perspectives. Nonstructural carbohydrates may contribute to grain filling, but correlations with yield are inconsistent and sometimes negative. Here we ask if there are hidden functions of nonstructural carbohydrates, advance an ecological dimension to this question, and speculate that high concentration of nonstructural carbohydrates may challenge the osmotic homeostasis of aphids, thus providing a working hypothesis that connects nonstructural carbohydrates with aphid resistance in cereals. In the light of this proposition, the amount and concentration of nonstructural carbohydrates should be regarded as functionally different traits, with amount relevant to the carbon economy of the crop and concentration playing an osmotic role. We conclude with suggestions for experiments to test our hypothesis.

7.
J Exp Bot ; 69(13): 3235-3243, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29304259

ABSTRACT

Maize grain yield is highly related to the number of kernels that are established during the flowering period. Kernel number depends on the accumulation of ear biomass and the efficiency of using this biomass for kernel set. Ear biomass depends on the rate of plant biomass accumulation and the proportion of this biomass that is allocated to the ear. In contrast to other major crops, the proportion of plant biomass that is allocated to the ear is not constant in maize, being almost zero under stress conditions. Fortunately, there is wide native genetic variability for this trait, with major practical implications for crop management and plant breeding. Conditions that inhibit plant growth commonly delay silk appearance relative to male anthesis. Time to silking and silk extrusion, which is a tissue expansion process, is dependent on water turgor and ear biomass accumulation, and the magnitude of this delay is used as a marker to phenotype for stress susceptibility. Ear biomass accumulation can also be used for predicting the number of silks that have been extruded if genotype-specific parameters are known. Here, several mechanistic plant and canopy traits are described, together with their implications for better understanding maize yield determination under limited plant growth environments. An ideal genotype sustains growth in environments with limited water or nutrients, has uniform canopies, has increased biomass partitioning to the ear at reduced plant growth, reaches silking with minimum ear biomass, and has rapid silk extrusion for minimizing developmental delays between competing structures within the ear. All these traits help maximize kernel set and yield at limited plant growth, and most have been indirectly selected by breeders when increasing yield.


Subject(s)
Edible Grain/growth & development , Flowers/growth & development , Zea mays/growth & development , Biomass , Environment , Reproduction
8.
Funct Plant Biol ; 43(9): 862-869, 2016 Sep.
Article in English | MEDLINE | ID: mdl-32480510

ABSTRACT

Soybean has a narrow genetic base thought to limit future yield genetic gains. However, there is no evidence whether this reduction in genetic diversity correlates with diversity loss for any yield trait. We tested how photosynthetic nitrogen use efficiency (leaf photosynthesis per unit nitrogen, NUEp) evolved from the wild relative Glycine soja Siebold & Zucc. to the current Glycine max (L.) Merr. Five populations resulting from different evolutionary bottlenecks were evaluated under field conditions. Populations were wild ancestors, domesticated Asian landraces, North American ancestors, and modern cultivars. Genotypic differences in photosynthesis and leaf nitrogen were evident, creating a significant 3-fold variation in phenotypic NUEp. There was a parallel reduction in molecular marker and phenotypic NUEp diversity after each evolutionary bottleneck. G. soja had three times more NUEp diversity and 25% more average NUEp compared with the elite modern cultivars. Two strategies for increasing NUEp were identified: (i) increases in light saturated photosynthesis (Pmax), and, alternatively, (ii) reductions in leaf nitrogen. A modelling approach showed that NUEp will increase yield only if based on increased Pmax. Our study quantified the genetic potential of exotic germplasm available for trait-directed breeding. Results antagonise the concept that elite germplasm is always superior for any relevant yield trait when compared with undomesticated germplasm.

9.
G3 (Bethesda) ; 4(9): 1611-21, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-25237113

ABSTRACT

Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60-0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm.


Subject(s)
Quantitative Trait Loci , Zea mays/growth & development , Zea mays/genetics , Chromosome Mapping , Genotype , Phenotype , Seeds/genetics , Seeds/growth & development
10.
J Exp Bot ; 65(15): 4479-87, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24895355

ABSTRACT

Maize kernel weight (KW) is associated with the duration of the grain-filling period (GFD) and the rate of kernel biomass accumulation (KGR). It is also related to the dynamics of water and hence is physiologically linked to the maximum kernel water content (MWC), kernel desiccation rate (KDR), and moisture concentration at physiological maturity (MCPM). This work proposed that principles of phenotypic plasticity can help to consolidated the understanding of the environmental modulation and genetic control of these traits. For that purpose, a maize population of 245 recombinant inbred lines (RILs) was grown under different environmental conditions. Trait plasticity was calculated as the ratio of the variance of each RIL to the overall phenotypic variance of the population of RILs. This work found a hierarchy of plasticities: KDR ≈ GFD > MCPM > KGR > KW > MWC. There was no phenotypic and genetic correlation between traits per se and trait plasticities. MWC, the trait with the lowest plasticity, was the exception because common quantitative trait loci were found for the trait and its plasticity. Independent genetic control of a trait per se and genetic control of its plasticity is a condition for the independent evolution of traits and their plasticities. This allows breeders potentially to select for high or low plasticity in combination with high or low values of economically relevant traits.


Subject(s)
Phenotype , Seeds/growth & development , Zea mays/physiology , Environment , Quantitative Trait Loci , Quantitative Trait, Heritable
SELECTION OF CITATIONS
SEARCH DETAIL
...