Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Am J Transplant ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615901

ABSTRACT

Normothermic machine perfusion (NMP) is increasingly considered for pretransplant kidney quality assessment. However, fundamental questions about differences between in vivo and ex vivo renal function, as well as the impact of ischemic injury on ex vivo physiology, remain unanswered. This study utilized magnetic resonance imaging (MRI), alongside conventional parameters to explore differences between in vivo and ex vivo renal function and the impact of warm ischemia on a kidney's behavior ex vivo. Renal MRI scans and samples were obtained from living pigs (n = 30) in vivo. Next, kidney pairs were procured and exposed to minimal, or 75 minutes of warm ischemia, followed by 6 hours of hypothermic machine perfusion. Both kidneys simultaneously underwent 6-hour ex vivo perfusion in MRI-compatible NMP circuits to obtain multiparametric MRI data. Ischemically injured ex vivo kidneys showed a significantly altered regional blood flow distribution compared to in vivo and minimally damaged organs. Both ex vivo groups showed diffusion restriction relative to in vivo. Our findings underscore the differences between in vivo and ex vivo MRI-based renal characteristics. Therefore, when assessing organ viability during NMP, it should be considered to incorporate parameters beyond the conventional functional markers that are common in vivo.

2.
Med Phys ; 51(6): 4297-4310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38323867

ABSTRACT

BACKGROUND: Cardiovascular disease is the most common cause of death worldwide, including infection and inflammation related conditions. Multiple studies have demonstrated potential advantages of hybrid positron emission tomography combined with computed tomography (PET/CT) as an adjunct to current clinical inflammatory and infectious biochemical markers. To quantitatively analyze vascular diseases at PET/CT, robust segmentation of the aorta is necessary. However, manual segmentation is extremely time-consuming and labor-intensive. PURPOSE: To investigate the feasibility and accuracy of an automated tool to segment and quantify multiple parts of the diseased aorta on unenhanced low-dose computed tomography (LDCT) as an anatomical reference for PET-assessed vascular disease. METHODS: A software pipeline was developed including automated segmentation using a 3D U-Net, calcium scoring, PET uptake quantification, background measurement, radiomics feature extraction, and 2D surface visualization of vessel wall calcium and tracer uptake distribution. To train the 3D U-Net, 352 non-contrast LDCTs from (2-[18F]FDG and Na[18F]F) PET/CTs performed in patients with various vascular pathologies with manual segmentation of the ascending aorta, aortic arch, descending aorta, and abdominal aorta were used. The last 22 consecutive scans were used as a hold-out internal test set. The remaining dataset was randomly split into training (n = 264; 80%) and validation (n = 66; 20%) sets. Further evaluation was performed on an external test set of 49 PET/CTs. The dice similarity coefficient (DSC) and Hausdorff distance (HD) were used to assess segmentation performance. Automatically obtained calcium scores and uptake values were compared with manual scoring obtained using clinical softwares (syngo.via and Affinity Viewer) in six patient images. intraclass correlation coefficients (ICC) were calculated to validate calcium and uptake values. RESULTS: Fully automated segmentation of the aorta using a 3D U-Net was feasible in LDCT obtained from PET/CT scans. The external test set yielded a DSC of 0.867 ± 0.030 and HD of 1.0 [0.6-1.4] mm, similar to an open-source model with a DSC of 0.864 ± 0.023 and HD of 1.4 [1.0-1.8] mm. Quantification of calcium and uptake values were in excellent agreement with clinical software (ICC: 1.00 [1.00-1.00] and 0.99 [0.93-1.00] for calcium and uptake values, respectively). CONCLUSIONS: We present an automated pipeline to segment the ascending aorta, aortic arch, descending aorta, and abdominal aorta on LDCT from PET/CT and to accurately provide uptake values, calcium scores, background measurement, radiomics features, and a 2D visualization. We call this algorithm SEQUOIA (SEgmentation, QUantification, and visualizatiOn of the dIseased Aorta) and is available at https://github.com/UMCG-CVI/SEQUOIA. This model could augment the utility of aortic evaluation at PET/CT studies tremendously, irrespective of the tracer, and potentially provide fast and reliable quantification of cardiovascular diseases in clinical practice, both for primary diagnosis and disease monitoring.


Subject(s)
Automation , Image Processing, Computer-Assisted , Positron Emission Tomography Computed Tomography , Humans , Image Processing, Computer-Assisted/methods , Aorta/diagnostic imaging , Aortic Diseases/diagnostic imaging , Female , Feasibility Studies , Male
3.
Brain Imaging Behav ; 18(2): 421-429, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294581

ABSTRACT

This study aims to investigate cerebral parenchymal and ventricular volume changes after subarachnoid hemorrhage (SAH) and their potential association with cognitive impairment. 17 patients with aneurysmal SAH (aSAH) and 21 patients with angiographically negative SAH (anSAH) without visually apparent parenchymal loss on conventional magnetic resonance imaging (MRI) were included, along with 76 healthy controls. Volumetric analyses were performed using an automated clinical segmentation and quantification tool. Measurements were compared to on-board normative reference database (n = 1923) adjusted for age, sex, and intracranial volume. Cognition was assessed with tests for psychomotor speed, attentional control, (working) memory, executive functioning, and social cognition. All measurements took place 5 months after SAH. Lower cerebral parenchymal volumes were most pronounced in the frontal lobe (aSAH: n = 6 [35%], anSAH n = 7 [33%]), while higher volumes were most substantial in the lateral ventricle (aSAH: n = 5 [29%], anSAH n = 9 [43%]). No significant differences in regional brain volumes were observed between both SAH groups. Patients with lower frontal lobe volume exhibited significantly lower scores in psychomotor speed (U = 81, p = 0.02) and attentional control (t = 2.86, p = 0.004). Additionally, higher lateral ventricle volume was associated with poorer memory (t = 3.06, p = 0.002). Regional brain volume changes in patients with SAH without visible parenchymal abnormalities on MRI can still be quantified using a fully automatic clinical-grade tool, exposing changes which may contribute to cognitive impairment. Therefore, it is important to provide neuropsychological assessment for both SAH groups, also including those with clinically mild symptoms.


Subject(s)
Cognitive Dysfunction , Subarachnoid Hemorrhage , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Magnetic Resonance Imaging , Cognition , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Executive Function
4.
Cereb Circ Cogn Behav ; 6: 100192, 2024.
Article in English | MEDLINE | ID: mdl-38174052

ABSTRACT

Background: The role of small vessel disease in the development of dementia is not yet completely understood. Functional brain connectivity has been shown to differ between individuals with and without cerebral small vessel disease. However, a comprehensive measure of small vessel disease quantifying the overall damage on the brain is not consistently used and studies using such measure in mild cognitive impairment individuals are missing. Method: Functional brain connectivity differences were analyzed between mild cognitive impairment individuals with absent or low (n = 34) and high (n = 34) small vessel disease burden using data from the Parelsnoer Institute, a Dutch multicenter study. Small vessel disease was characterized using an ordinal scale considering: lacunes, microbleeds, perivascular spaces in the basal ganglia, and white matter hyperintensities. Resting state functional MRI data using 3 Tesla scanners was analyzed with group-independent component analysis using the CONN toolbox. Results: Functional connectivity between areas of the cerebellum and between the cerebellum and the thalamus and caudate nucleus was higher in the absent or low small vessel disease group compared to the high small vessel disease group. Conclusion: These findings might suggest that functional connectivity of mild cognitive impairment individuals with low or absent small vessel disease burden is more intact than in mild cognitive impairment individuals with high small vessel disease. These brain areas are mainly responsible for motor, attentional and executive functions, domains which in previous studies were found to be mostly associated with small vessel disease markers. Our results support findings on the involvement of the cerebellum in cognitive functioning.

6.
Front Bioeng Biotechnol ; 11: 1236949, 2023.
Article in English | MEDLINE | ID: mdl-38026891

ABSTRACT

Stiffness plays a vital role in diagnosing renal fibrosis. However, perfusion influences renal stiffness in various chronic kidney diseases. Therefore, we aimed to characterize the effect of tissue perfusion on renal stiffness and tissue fluidity measured by tomoelastography based on multifrequency magnetic resonance elastography in an ex vivo model. Five porcine kidneys were perfused ex vivo in an MRI-compatible normothermic machine perfusion setup with adjusted blood pressure in the 50/10-160/120 mmHg range. Simultaneously, renal cortical and medullary stiffness and fluidity were obtained by tomoelastography. For the cortex, a statistically significant (p < 0.001) strong positive correlation was observed between both perfusion parameters (blood pressure and resulting flow) and stiffness (r = 0.95, 0.91), as well as fluidity (r = 0.96, 0.92). For the medulla, such significant (p < 0.001) correlations were solely observed between the perfusion parameters and stiffness (r = 0.88, 0.71). Our findings demonstrate a strong perfusion dependency of renal stiffness and fluidity in an ex vivo setup. Moreover, changes in perfusion are rapidly followed by changes in renal mechanical properties-highlighting the sensitivity of tomoelastography to fluid pressure and the potential need for correcting mechanics-derived imaging biomarkers when addressing solid structures in renal tissue.

7.
Eur Radiol ; 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37848773

ABSTRACT

OBJECTIVES: To evaluate the added value of MR dynamic susceptibility contrast (DSC)-perfusion-weighted imaging (PWI)-derived tumour microvascular and oxygenation information with cerebral blood volume (CBV) to distinguish pseudoprogression from true progression (TP) in post-treatment glioblastoma. METHODS: This retrospective single-institution study included patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma and a newly developed or enlarging measurable contrast-enhancing mass within 12 weeks after concurrent chemoradiotherapy. CBV, capillary transit time heterogeneity (CTH), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2) were obtained from DSC-PWI. Predictors were selected using univariable logistic regression, and performance was measured with adjusted diagnostic odds with tumour volume and area under the curve (AUC) of receiver operating characteristics analysis. RESULTS: A total of 103 patients were included (mean age, 59.6 years; 59 women), with 67 cases of TP and 36 cases of pseudoprogression. Pseudoprogression exhibited higher CTH (4.0 vs. 3.4, p = .019) and higher OEF (12.7 vs. 10.7, p = .014) than TP, but a similar CBV (1.48 vs. 1.53, p = .13) and CMRO2 (7.7 vs. 7.3s, p = .598). Independent of tumour volume, both high CTH (adjusted odds ratio [OR] 1.52; 95% confidence interval [CI]: 1.11-2.09, p = .009) and high OEF (adjusted OR 1.17; 95% CI:1.03-1.33, p = .016) were predictors of pseudoprogression. The combination of CTH, OEF, and CBV yielded higher diagnostic performance (AUC 0.71) than CBV alone (AUC 0.65). CONCLUSION: High intratumoural capillary transit heterogeneity and high oxygen extraction fraction derived from DSC-PWI have enhanced the diagnostic value of CBV in pseudoprogression of post-treatment IDH-wild type glioblastoma. CLINICAL RELEVANCE STATEMENT: In the early post-treatment stage of glioblastoma, pseudoprogression exhibited both high oxygen extraction fraction and high capillary transit heterogeneity and these dynamic susceptibility contrast-perfusion weighted imaging derived parameters have added value in cerebral blood volume-based noninvasive differentiation of pseudoprogression from true progression. KEY POINTS: • Capillary transit time heterogeneity and oxygen extraction fraction can be measured noninvasively through processing of dynamic susceptibility contrast imaging. • Pseudoprogression exhibited higher capillary transit time heterogeneity and higher oxygen extraction fraction than true progression. • A combination of cerebral blood volume, capillary transit time heterogeneity, and oxygen extraction fraction yielded the highest diagnostic performance (area under the curve 0.71).

8.
Semin Nucl Med ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37640631

ABSTRACT

Imaging water pathways in the human body provides an excellent way of measuring accurately the blood flow directed to different organs. This makes it a powerful diagnostic tool for a wide range of diseases that are related to perfusion and oxygenation. Although water PET has a long history, its true potential has not made it into regular clinical practice. The article highlights the potential of water PET in molecular imaging and suggests its prospective role in becoming an essential tool for the 21st century precision medicine in different domains ranging from preclinical to clinical research and practice. The recent technical advances in high-sensitivity PET imaging can play a key accelerating role in empowering this technique, though there are still several challenges to overcome.

9.
Eur J Nucl Med Mol Imaging ; 50(13): 3917-3927, 2023 11.
Article in English | MEDLINE | ID: mdl-37552369

ABSTRACT

INTRODUCTION: P-glycoprotein (P-gp) is one of the most studied efflux transporters at the blood-brain barrier. It plays an important role in brain homeostasis by protecting the brain from a variety of endogenous and exogeneous substances. Changes in P-gp function are associated both with the onset of neuropsychiatric diseases, including Alzheimer's disease and Parkinson's disease, and with drug-resistance, for example in treatment-resistant depression. The most widely used approach to measure P-gp function in vivo is (R)-[11C]verapamil PET. (R)-[11C]verapamil is, however, an avid P-gp substrate, which complicates the use of this tracer to measure an increase in P-gp function as its baseline uptake is already very low. [18F]MC225 was developed to measure both increases and decreases in P-gp function. AIM: The aim of this study was (1) to identify the pharmacokinetic model that best describes [18F]MC225 kinetics in the human brain and (2) to determine test-retest variability. METHODS: Five (2 male, 3 female) of fourteen healthy subjects (8 male, 6 female, age 67 ± 5 years) were scanned twice (injected dose 201 ± 47 MBq) with a minimum interval of 2 weeks between scans. Each scanning session consisted of a 60-min dynamic [18F]MC225 scan with continuous arterial sampling. Whole brain grey matter data were fitted to a single tissue compartment model, and to reversible and irreversible two tissue-compartment models to obtain various outcome parameters (in particular the volume of distribution (VT), Ki, and the rate constants K1 and k2). In addition, a reversible two-tissue compartment model with fixed k3/k4 was included. The preferred model was selected based on the weighted Akaike Information Criterion (AIC) score. Test-retest variability (TRTV) was determined to assess reproducibility. RESULTS: Sixty minutes post-injection, the parent fraction was 63.8 ± 4.0%. The reversible two tissue compartment model corrected for plasma metabolites with an estimated blood volume (VB) showed the highest AIC weight score of 34.3 ± 17.6%. The TRVT of the VT for [18F]MC225 PET scans was 28.3 ± 20.4% for the whole brain grey matter region using this preferred model. CONCLUSION: [18F]MC225 VT, derived using a reversible two-tissue compartment model, is the preferred parameter to describe P-gp function in the human BBB. This outcome parameter has an average test-retest variability of 28%. TRIAL REGISTRATION: EudraCT 2020-001564-28 . Registered 25 May 2020.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Blood-Brain Barrier , Humans , Male , Female , Middle Aged , Aged , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Reproducibility of Results , Brain/diagnostic imaging , Brain/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Positron-Emission Tomography , Verapamil , Radiopharmaceuticals/pharmacokinetics
10.
Clin Transl Radiat Oncol ; 42: 100652, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37415639

ABSTRACT

Background and purpose: Previous pre-clinical research using [18F]FDG-PET has shown that whole-brain photon-based radiotherapy can affect brain glucose metabolism. This study, aimed to investigate how these findings translate into regional changes in brain [18F]FDG uptake in patients with head and neck cancer treated with intensity-modulated proton therapy (IMPT). Materials and methods: Twenty-three head and neck cancer patients treated with IMPT and available [18F]FDG scans before and at 3 months follow-up were retrospectively evaluated. Regional assessment of the [18F]FDG standardized uptake value (SUV) parameters and radiation dose in the left (L) and right (R) hippocampi, L and R occipital lobes, cerebellum, temporal lobe, L and R parietal lobes and frontal lobe were evaluated to understand the relationship between regional changes in SUV metrics and radiation dose. Results: Three months after IMPT, [18F]FDG brain uptake calculated using SUVmean and SUVmax, was significantly higher than that before IMPT. The absolute SUVmean after IMPT was significantly higher than before IMPT in seven regions of the brain (p ≤ 0.01), except for the R (p = 0.11) and L (p = 0.15) hippocampi. Absolute and relative changes were variably correlated with the regional maximum and mean doses received in most of the brain regions. Conclusion: Our findings suggest that 3 months after completion of IMPT for head and neck cancer, significant increases in the uptake of [18F]FDG (reflected by SUVmean and SUVmax) can be detected in several individual key brain regions, and when evaluated jointly, it shows a negative correlation with the mean dose. Future studies are needed to assess whether and how these results could be used for the early identification of patients at risk for adverse cognitive effects of radiation doses in non-tumor tissues.

12.
Artif Organs ; 47(1): 105-116, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35996889

ABSTRACT

BACKGROUND: The shortage of donor organs for transplantation remains a worldwide problem. The utilization of suboptimal deceased donors enlarges the pool of potential organs, yet consequently, clinicians face the difficult decision of whether these sub-optimal organs are of sufficient quality for transplantation. Novel technologies could play a pivotal role in making pre-transplant organ assessment more objective and reliable. METHODS: Ex vivo normothermic machine perfusion (NMP) at temperatures around 35-37°C allows organ quality assessment in a near-physiological environment. Advanced magnetic resonance imaging (MRI) techniques convey unique information about an organ's structural and functional integrity. The concept of applying magnetic resonance imaging during renal normothermic machine perfusion is novel in both renal and radiological research and we have developed the first MRI-compatible NMP setup for human-sized kidneys. RESULTS: We were able to obtain a detailed and real-time view of ongoing processes inside renal grafts during ex vivo perfusion. This new technique can visualize structural abnormalities, quantify regional flow distribution, renal metabolism, and local oxygen availability, and track the distribution of ex vivo administered cellular therapy. CONCLUSION: This platform allows for advanced pre-transplant organ assessment, provides a new realistic tool for studies into renal physiology and metabolism, and may facilitate therapeutic tracing of pharmacological and cellular interventions to an isolated kidney.


Subject(s)
Kidney Transplantation , Organ Preservation , Humans , Perfusion/methods , Organ Preservation/methods , Kidney/diagnostic imaging , Kidney Transplantation/methods , Magnetic Resonance Imaging
13.
Cancer Imaging ; 22(1): 69, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36527149

ABSTRACT

This review describes the main benefits of using long axial field of view (LAFOV) PET in clinical applications. As LAFOV PET is the latest development in PET instrumentation, many studies are ongoing that explore the potentials of these systems, which are characterized by ultra-high sensitivity. This review not only provides an overview of the published clinical applications using LAFOV PET so far, but also provides insight in clinical applications that are currently under investigation. Apart from the straightforward reduction in acquisition times or administered amount of radiotracer, LAFOV PET also allows for other clinical applications that to date were mostly limited to research, e.g., dual tracer imaging, whole body dynamic PET imaging, omission of CT in serial PET acquisition for repeat imaging, and studying molecular interactions between organ systems. It is expected that this generation of PET systems will significantly advance the field of nuclear medicine and molecular imaging.


Subject(s)
Electrons , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Positron-Emission Tomography/methods , Radioisotopes
14.
PLoS One ; 17(12): e0278308, 2022.
Article in English | MEDLINE | ID: mdl-36454872

ABSTRACT

In young adults, overweight and hypertension possibly already trigger cardiac remodeling as seen in mature adults, potentially overlapping non-ischemic cardiomyopathy findings. To this end, in young overweight and hypertensive adults, we aimed to investigate changes in left ventricular mass (LVM) and cardiac volumes, and the impact of different body scales for indexation. We also aimed to explore the presence of myocardial fibrosis, fat and edema, and changes in cellular mass with extracellular volume (ECV), T1 and T2 tissue characteristics. We prospectively recruited 126 asymptomatic subjects (51% male) aged 27-41 years for 3T cardiac magnetic resonance imaging: 40 controls, 40 overweight, 17 hypertensive and 29 hypertensive overweight. Myocyte mass was calculated as (100%-ECV) * height2.7-indexed LVM. Absolute LVM was significantly increased in overweight, hypertensive and hypertensive overweight groups (104 ± 23, 109 ± 27, 112 ± 26 g) versus controls (87 ± 21 g), with similar volumes. Body surface area (BSA) indexation resulted in LVM normalization in overweights (48 ± 8 g/m2) versus controls (47 ± 9 g/m2), but not in hypertensives (55 ± 9 g/m2) and hypertensive overweights (52 ± 9 g/m2). BSA-indexation overly decreased volumes in overweight versus normal-weight (LV end-diastolic volume; 80 ± 14 versus 92 ± 13 ml/m2), where height2.7-indexation did not. All risk groups had lower ECV (23 ± 2%, 23 ± 2%, 23 ± 3%) than controls (25 ± 2%) (P = 0.006, P = 0.113, P = 0.039), indicating increased myocyte mass (16.9 ± 2.7, 16.5 ± 2.3, 18.1 ± 3.5 versus 14.0 ± 2.9 g/m2.7). Native T1 values were similar. Lower T2 values in the hypertensive overweight group related to heart rate. In conclusion, BSA-indexation masks hypertrophy and causes volume overcorrection in overweight subjects compared to controls, height2.7-indexation therefore seems advisable.


Subject(s)
Hypertension , Overweight , Adult , Humans , Male , Young Adult , Female , Overweight/complications , Overweight/diagnostic imaging , Hypertension/complications , Hypertension/diagnostic imaging , Magnetic Resonance Imaging , Morbidity , Heart
15.
EJNMMI Phys ; 9(1): 74, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36308568

ABSTRACT

BACKGROUND: Excellent performance characteristics of the Vision Quadra PET/CT, e.g. a substantial increase in sensitivity, allow for precise measurements of image-derived input functions (IDIF) and tissue time activity curves. Previously we have proposed a method for a reduced 30 min (as opposed to 60 min) whole body 18F-FDG Patlak PET imaging procedure using a previously published population-averaged input function (PIF) scaled to IDIF values at 30-60 min post-injection (p.i.). The aim of the present study was to apply this method using the Vision Quadra PET/CT, including the use of a PIF to allow for shortened scan durations. METHODS: Twelve patients with suspected lung malignancy were included and received a weight-based injection of 18F-FDG. Patients underwent a 65-min dynamic PET acquisition which were reconstructed using European Association of Nuclear Medicine Research Ltd. (EARL) standards 2 reconstruction settings. A volume of interest (VOI) was placed in the ascending aorta (AA) to obtain the IDIF. An external PIF was scaled to IDIF values at 30-60, 40-60, and 50-60 min p.i., respectively, and parametric 18F-FDG influx rate constant (Ki) images were generated using a t* of 30, 40 or 50 min, respectively. Herein, tumour lesions as well as healthy tissues, i.e. liver, muscle tissue, spleen and grey matter, were segmented. RESULTS: Good agreement between the IDIF and corresponding PIF scaled to 30-60 min p.i. and 40-60 min p.i. was obtained with 7.38% deviation in Ki. Bland-Altman plots showed excellent agreement in Ki obtained using the PIF scaled to the IDIF at 30-60 min p.i. and at 40-60 min p.i. as all data points were within the limits of agreement (LOA) (- 0.004-0.002, bias: - 0.001); for the 50-60 min p.i. Ki, all except one data point fell in between the LOA (- 0.021-0.012, bias: - 0.005). CONCLUSIONS: Parametric whole body 18F-FDG Patlak Ki images can be generated non-invasively on a Vision Quadra PET/CT system. In addition, using a scaled PIF allows for a substantial (factor 2 to 3) reduction in scan time without substantial loss of accuracy (7.38% bias) and precision (image quality and noise interference).

16.
JMIR Res Protoc ; 11(9): e38190, 2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36173673

ABSTRACT

BACKGROUND: A subarachnoid hemorrhage is a hemorrhage in the subarachnoid space that is often caused by the rupture of an aneurysm. Patients who survive a subarachnoid hemorrhage have a high risk of complications and a negative long-term outcome. OBJECTIVE: The aim of the Imaging, Cognition and Outcome of Neuropsychological functioning after Subarachnoid hemorrhage (ICONS) study is to investigate whether and to what extent deficits exist in multiple domains after subarachnoid hemorrhage, including cognition, emotion and behavior, and to investigate whether brain damage can be detected in patients with subarachnoid hemorrhage. We aim to determine which early measures of cognition, emotion and behavior, and brain damage in the subacute stage play a role in long-term recovery after subarachnoid hemorrhage. Recovery is defined as functioning at a societal participation level, with a focus on resuming and maintaining work, leisure activities, and social relationships over the long term. METHODS: The ICONS study is an observational, prospective, single-center cohort study. The study includes patients with subarachnoid hemorrhage admitted to the Neurosurgery Unit of the University Medical Centre Groningen in the Netherlands. The inclusion criteria include diagnosis of an aneurysmal subarachnoid hemorrhage or an angiographically negative subarachnoid hemorrhage, sufficient ability in the Dutch language, and age older than 18 years. Patients will undergo neuropsychological assessment and magnetic resonance imaging 6 months after the subarachnoid hemorrhage. Furthermore, patients will be asked to fill in questionnaires on multiple psychosocial measures and undergo a structured interview at 6 months, 1 year, and 2 years after the subarachnoid hemorrhage. The primary outcome measure of the ICONS study is societal participation 1 year after the subarachnoid hemorrhage, measured with the Dutch version of the Impact on Participation and Autonomy questionnaire. RESULTS: The study was launched in December 2019 and recruitment is expected to continue until June 2023. At the time of the acceptance of this paper, 76 patients and 69 healthy controls have been included. The first results are expected in early 2023. CONCLUSIONS: The ICONS study is the first to collect and combine data after subarachnoid hemorrhage in a variety of domains, including cognition, emotion and behavior, and brain damage. The results will contribute to a more comprehensive understanding of the consequences of both aneurysmal subarachnoid hemorrhage and angiographically negative subarachnoid hemorrhage, which may ultimately optimize timely treatment for this patient group by setting realistic and attainable goals to improve daily functioning. TRIAL REGISTRATION: Netherlands Trial Register NL7803; https://trialsearch.who.int/Trial2.aspx?TrialID=NL7803. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/38190.

17.
Eur J Nucl Med Mol Imaging ; 49(13): 4652-4660, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35876867

ABSTRACT

PURPOSE: Current European Association of Nuclear Medicine (EANM) Research Ltd. (EARL) guidelines for the standardisation of PET imaging developed for conventional systems have not yet been adjusted for long axial field-of-view (LAFOV) systems. In order to use the LAFOV Siemens Biograph Vision Quadra PET/CT (Siemens Healthineers, Knoxville, TN, USA) in multicentre research and harmonised clinical use, compliance to EARL specifications for 18F-FDG tumour imaging was explored in the current study. Additional tests at various locations throughout the LAFOV and the use of shorter scan durations were included. Furthermore, clinical data were collected to further explore and validate the effects of reducing scan duration on semi-quantitative PET image biomarker accuracy and precision when using EARL-compliant reconstruction settings. METHODS: EARL compliance phantom measurements were performed using the NEMA image quality phantom both in the centre and at various locations throughout the LAFOV. PET data (maximum ring difference (MRD) = 85) were reconstructed using various reconstruction parameters and reprocessed to obtain images at shorter scan durations. Maximum, mean and peak activity concentration recovery coefficients (RC) were obtained for each sphere and compared to EARL standards specifications. Additionally, PET data (MRD = 85) of 10 oncological patients were acquired and reconstructed using various reconstruction settings and reprocessed from 10 min listmode acquisition into shorter scan durations. Per dataset, SUVs were derived from tumour lesions and healthy tissues. ANOVA repeated measures were performed to explore differences in lesion SUVmax and SUVpeak. Wilcoxon signed-rank tests were performed to evaluate differences in background SUVpeak and SUVmean between scan durations. The coefficient of variation (COV) was calculated to characterise noise. RESULTS: Phantom measurements showed EARL compliance for all positions throughout the LAFOV for all scan durations. Regarding patient data, EARL-compliant images showed no clinically meaningful significant differences in lesion SUVmax and SUVpeak or background SUVmean and SUVpeak between scan durations. Here, COV only varied slightly. CONCLUSION: Images obtained using the Vision Quadra PET/CT comply with EARL specifications. Scan duration and/or activity administration can be reduced up to a factor tenfold without the interference of increased noise.


Subject(s)
Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Phantoms, Imaging , Biomarkers
18.
Ageing Res Rev ; 79: 101661, 2022 08.
Article in English | MEDLINE | ID: mdl-35671869

ABSTRACT

Cerebral perfusion dysfunctions are seen in the early stages of Alzheimer's disease (AD). We systematically reviewed the literature to investigate the effect of pharmacological and non-pharmacological interventions on cerebral hemodynamics in randomized controlled trials involving AD patients or Mild Cognitive Impairment (MCI) due to AD. Studies involving other dementia types were excluded. Data was searched in April 2021 on MEDLINE, Embase, and Web of Science. Risk of bias was assessed using Cochrane Risk of Bias Tool. A meta-synthesis was performed separating results from MCI and AD studies. 31 studies were included and involved 310 MCI and 792 CE patients. The MCI studies (n = 8) included physical, cognitive, dietary, and pharmacological interventions. The AD studies (n = 23) included pharmacological, physical interventions, and phytotherapy. Cerebral perfusion was assessed with PET, ASL, Doppler, fNIRS, DSC-MRI, Xe-CT, and SPECT. Randomization and allocation concealment methods and subject characteristics such as AD-onset, education, and ethnicity were missing in several papers. Positive effects on hemodynamics were seen in 75 % of the MCI studies, and 52 % of the AD studies. Inserting cerebral perfusion outcome measures, together with established AD biomarkers, is fundamental to target all disease mechanisms and understand the role of cerebral perfusion in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/drug therapy , Alzheimer Disease/therapy , Biomarkers , Cerebrovascular Circulation , Cognitive Dysfunction/therapy , Disease Progression , Humans
19.
J Cereb Blood Flow Metab ; 42(11): 2095-2106, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35754351

ABSTRACT

Neuronal damage is the primary cause of long-term disability of multiple sclerosis (MS) patients. Assessment of axonal integrity from diffusion MRI parameters might enable better disease characterisation. 16 diffusion derived measurements from diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and fixel-based analysis (FBA) in lesions, peri-lesion and normal appearing white matter were investigated. Diffusion MRI scans of 11 MS patients were processed to generate DTI, DKI, and FBA images. Fractional anisotropy (FA) and fibre density (FD) were used to assess axonal integrity across brain regions. Subsequently, 359 lesions were identified, and lesion and peri-lesion segmentation was performed using structural T1w, T2w, T2w-FLAIR, and T1w post-contrast MRI. The segmentations were then used to extract 16 diffusion MRI parameters from lesion, peri-lesion, and contralateral normal appearing white matter (NAWM). The measurements for axonal integrity, DTI-FA, DKI-FA, FBA-FD, produced similar results. All diffusion MRI parameters were affected in lesions as compared to NAWM (p < 0.001), confirming loss of axonal integrity in lesions. In peri-lesions, most parameters, except FBA-FD, were also significantly different from NAWM, although the effect size was smaller than in lesions. The reduction in axonal integrity in peri-lesions, despite unaffected fibre density estimates, suggests an effect of Wallerian degeneration.


Subject(s)
Multiple Sclerosis , White Matter , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , White Matter/diagnostic imaging , White Matter/pathology
20.
Front Cardiovasc Med ; 9: 831080, 2022.
Article in English | MEDLINE | ID: mdl-35479280

ABSTRACT

Purpose: To evaluate if a fully-automatic deep learning method for myocardial strain analysis based on magnetic resonance imaging (MRI) cine images can detect asymptomatic dysfunction in young adults with cardiac risk factors. Methods: An automated workflow termed DeepStrain was implemented using two U-Net models for segmentation and motion tracking. DeepStrain was trained and tested using short-axis cine-MRI images from healthy subjects and patients with cardiac disease. Subsequently, subjects aged 18-45 years were prospectively recruited and classified among age- and gender-matched groups: risk factor group (RFG) 1 including overweight without hypertension or type 2 diabetes; RFG2 including hypertension without type 2 diabetes, regardless of overweight; RFG3 including type 2 diabetes, regardless of overweight or hypertension. Subjects underwent cardiac short-axis cine-MRI image acquisition. Differences in DeepStrain-based left ventricular global circumferential and radial strain and strain rate among groups were evaluated. Results: The cohort consisted of 119 participants: 30 controls, 39 in RFG1, 30 in RFG2, and 20 in RFG3. Despite comparable (>0.05) left-ventricular mass, volumes, and ejection fraction, all groups (RFG1, RFG2, RFG3) showed signs of asymptomatic left ventricular diastolic and systolic dysfunction, evidenced by lower circumferential early-diastolic strain rate (<0.05, <0.001, <0.01), and lower septal circumferential end-systolic strain (<0.001, <0.05, <0.001) compared with controls. Multivariate linear regression showed that body surface area correlated negatively with all strain measures (<0.01), and mean arterial pressure correlated negatively with early-diastolic strain rate (<0.01). Conclusion: DeepStrain fully-automatically provided evidence of asymptomatic left ventricular diastolic and systolic dysfunction in asymptomatic young adults with overweight, hypertension, and type 2 diabetes risk factors.

SELECTION OF CITATIONS
SEARCH DETAIL
...