Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Bioorg Chem ; 148: 107472, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788364

ABSTRACT

Patents tend to define a huge chemical space described by the combinatorial nature of Markush structures. However, the optimization of new principal active ingredient is frequently driven by a simple Free Wilson approach. This procedure leads to a highly focused study on the chemical space near a hit compound leaving many unexplored regions that may present highly biological active reservoirs. This study aims to demonstrate that this unveiled chemical space can hide compounds with interesting potential biological activity that would be worth pursuing. This underlines the value and necessity of broadening an approach beyond conventional strategies. Hence, we advocate for an alternative methodology that may be more efficient in the early drug discovery stages. We have selected the case of Tafenoquine, a single-dose treatment for the radical cure of P. vivax malaria approved by the FDA in 2018, as an example to illustrate the process. Through the deep exploration of the Tafenoquine chemical space, seven compounds with potential antimalarial activity have been rationally identified and synthesized. This small set is representative of the chemical diversity unexplored by the 58 analogs reported to date. After biological assessment, results evidence that our approach for rational design has proven to be a very efficient exploratory methodology suitable for the early drug discovery stages.


Subject(s)
Aminoquinolines , Antimalarials , Antimalarials/pharmacology , Antimalarials/chemistry , Antimalarials/chemical synthesis , Aminoquinolines/chemistry , Aminoquinolines/pharmacology , Aminoquinolines/chemical synthesis , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Humans , Parasitic Sensitivity Tests , Plasmodium vivax/drug effects , Plasmodium falciparum/drug effects
2.
Heliyon ; 10(10): e30811, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38774330

ABSTRACT

This work was conducted to establish the efficiency of an impressed current cathodic protection system for musical instruments' steel strings in protecting them from corrosion caused by human sweat. To conduct this research, the harmonic content degradation of a guitar string subjected to different corrosion stages by artificial human sweat, with and without cathodic protection by an impressed current, was studied. String corrosion is characterised by not only the electrochemical technique of polarisation resistance, but also by weight loss by gravimetric measurements and FESEM microscopy. From the correlation between the acoustic and electrochemical results, it can be concluded that harmonic content degradation of guitar strings increases corrosion but is less significant in the strings protected by impressed current.

3.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38543069

ABSTRACT

The impact of the crystalline or amorphous structure of a solid on the solubility and pharmacokinetic properties of a drug candidate is always considered by the pharmaceutical industry during the development of a new drug; however, it is not so frequently considered during the early drug discovery process by organic and medicinal chemists, particularly those working in academia. We want to share, as an example, the false negative obtained in the biological testing of a solid sample of a tyrosine kinase inhibitor due to its unexpected crystallinity and lower solubility with respect to a solid amorphous batch of the same compound and the experimentation carried out to establish the origin of such a discrepancy.

4.
Molecules ; 28(22)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38005298

ABSTRACT

Chalcones are a type of molecule that can be considered as easily synthesizable through aldol condensation or that can be readily purchased from habitual commercial vendors. However, on reviewing the literature, one realizes that there are no standard procedures for such aldol condensations, that there exists a wide range of alternative methods for the aldol condensation (indicating that such a condensation is not always simple), and that, in many cases, low yields are obtained that involve purifications by recrystallization or column chromatography. To develop a robust standard protocol independent of the nature of the substituents present on the acetophenone or the benzaldehyde involved in the aldol condensation leading to the chalcone, we made a comparison between an aldol condensation in KOH/EtOH and a Wittig reaction between the corresponding ylide and benzaldehyde in water. We describe an improved procedure for the Wittig reaction and a protocol for the elimination of the Ph3P=O byproduct (and the excess of ylide used) by filtration of the crude reaction product through a silica gel plug. We thus demonstrate that such an improved procedure can be a general method for the synthesis of chalcones in high yield and excellent purity and is clearly an improvement on the classical aldol condensation.

5.
Molecules ; 28(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36677832

ABSTRACT

For a new molecular entity (NME) to become a drug, it is not only essential to have the right biological activity also be safe and efficient, but it is also required to have a favorable pharmacokinetic profile including toxicity (ADMET). Consequently, there is a need to predict, during the early stages of development, the ADMET properties to increase the success rate of compounds reaching the lead optimization process. Since Lipinski's rule of five, the prediction of pharmacokinetic parameters has evolved towards the current in silico tools based on empirical approaches or molecular modeling. The commercial specialized software for performing such predictions, which is usually costly, is, in many cases, not among the possibilities for research laboratories in academia or at small biotech companies. Nevertheless, in recent years, many free online tools have become available, allowing, more or less accurately, for the prediction of the most relevant pharmacokinetic parameters. This paper studies 18 free web servers capable of predicting ADMET properties and analyzed their advantages and disadvantages, their model-based calculations, and their degree of accuracy by considering the experimental data reported for a set of 24 FDA-approved tyrosine kinase inhibitors (TKIs) as a model of a research project.


Subject(s)
Models, Biological , Software , Models, Molecular , Biotechnology
6.
Int J Mol Sci ; 23(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36555788

ABSTRACT

The muscleblind-like protein family (MBNL) plays a prominent role in the regulation of alternative splicing. Consequently, the loss of MBNL function resulting from sequestration by RNA hairpins triggers the development of a neuromuscular disease called myotonic dystrophy (DM). Despite the sequence and structural similarities between the four zinc-finger domains that form MBNL1, recent studies have revealed that the four binding domains have differentiated splicing activity. The dynamic behaviors of MBNL1 ZnFs were simulated using conventional molecular dynamics (cMD) and steered molecular dynamics (sMD) simulations of a structural model of MBNL1 protein to provide insights into the binding selectivity of the four zinc-finger (ZnF) domains toward the GpC steps in YGCY RNA sequence. In accordance with previous studies, our results suggest that both global and local residue fluctuations on each domain have great impacts on triggering alternative splicing, indicating that local motions in RNA-binding domains could modulate their affinity and specificity. In addition, all four ZnF domains provide a distinct RNA-binding environment in terms of structural sampling and mobility that may be involved in the differentiated MBNL1 splicing events reported in the literature.


Subject(s)
Alternative Splicing , Myotonic Dystrophy , Humans , Molecular Dynamics Simulation , RNA/genetics , RNA/metabolism , RNA Splicing , Myotonic Dystrophy/genetics , Zinc/metabolism , RNA-Binding Proteins/metabolism
7.
Pharmaceuticals (Basel) ; 15(9)2022 Sep 18.
Article in English | MEDLINE | ID: mdl-36145380

ABSTRACT

Most of the product patents claim a large number of compounds based on a Markush structure. However, the identification and optimization of new principal active ingredients is frequently driven by a simple Free Wilson approach, leading to a highly focused study only involving the chemical space nearby a hit compound. This fact raises the question: do the tested compounds described in patents really reflect the full molecular diversity described in the Markush structure? In this study, we contrast the performance of rational selection to conventional approaches in seven real-case patents, assessing their ability to describe the patent's chemical space. Results demonstrate that the integration of computer-aided library selection methods in the early stages of the drug discovery process would boost the identification of new potential hits across the chemical space.

8.
J Med Chem ; 65(8): 6070-6087, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35417652

ABSTRACT

Targeting the kinases MNK1 and MNK2 has emerged as a valuable strategy in oncology. However, most of the advanced inhibitors are acting in an adenosine triphosphate (ATP)-competitive mode, precluding the evaluation of different binding modes in preclinical settings. Using rational design, we identified and validated the 4,6-diaryl-pyrazolo[3,4-b]pyridin-3-amine scaffold as the core for MNK inhibitors. Signaling pathway analysis confirmed a direct effect of the hit compound EB1 on MNKs, and in line with the reported function of these kinases, EB1 only affects the growth of tumor but not normal cells. Molecular modeling revealed the binding of EB1 to the inactive conformation of MNK1 and the interaction with the specific DFD motif. This novel mode of action appears to be superior to the ATP-competitive inhibitors, which render the protein in a pseudo-active state. Overcoming this paradoxical activation of MNKs by EB1 represents therefore a promising starting point for the development of a novel generation of MNK inhibitors.


Subject(s)
Intracellular Signaling Peptides and Proteins , Protein Serine-Threonine Kinases , Adenosine Triphosphate , Intracellular Signaling Peptides and Proteins/metabolism , Models, Molecular , Signal Transduction
9.
Molecules ; 27(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408636

ABSTRACT

Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been described which are included in more than 5500 references (2400 patents) up to date. This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and the biomedical applications of such compounds.


Subject(s)
Pyridines , Pyridines/therapeutic use
10.
Semin Cell Dev Biol ; 132: 213-229, 2022 12.
Article in English | MEDLINE | ID: mdl-35184940

ABSTRACT

As a post-translational modification that has pivotal roles in protein degradation, ubiquitination ensures that intracellular proteins act in a precise spatial and temporal manner to regulate diversified cellular processes. Perturbation of the ubiquitin system contributes directly to the onset and progression of a wide variety of diseases, including various subtypes of cancer. This highly regulated system has been for years an active research area for drug discovery that is exemplified by several approved drugs. In this review, we will provide an update of the main breakthrough scientific discoveries that have been leading the clinical development of ubiquitin-targeting therapies in the last decade, with a special focus on E1 and E3 modulators. We will further discuss the unique challenges of identifying new potential therapeutic targets within this ubiquitous and highly complex machinery, based on available crystallographic structures, and explore chemical approaches by which these challenges might be met.


Subject(s)
Neoplasms , Ubiquitin , Humans , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Protein Processing, Post-Translational , Neoplasms/drug therapy
11.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34959711

ABSTRACT

Pyrido[2,3-d]pyrimidin-7(8H)-ones have attracted widespread interest due to their similarity with nitrogenous bases found in DNA and RNA and their potential applicability as tyrosine kinase inhibitors. Such structures, presenting up to five diversity centers, have allowed the synthesis of a wide range of differently substituted compounds; however, the diversity at the C4 position has mostly been limited to a few substituents. In this paper, a general synthetic methodology for the synthesis of 4-substituted-2-(phenylamino)-5,6-dihydropyrido[2,3-d]pyrimidin-7(8H)-ones is described. By using cross-coupling reactions, such as Ullmann, Buchwald-Hartwig, Suzuki-Miyaura, or Sonogashira reactions, catalyzed by Cu or Pd, we were able to describe new potential biologically active compounds. The resulting pyrido[2,3-d]pyrimidin-7(8H)-ones include N-alkyl, N-aryl, O-aryl, S-aryl, aryl, and arylethynyl substituents at C4, which have never been explored in connection with the biological activity of such heterocycles as tyrosine kinase inhibitors, in particular as ZAP-70 inhibitors.

12.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34681253

ABSTRACT

Naphthyridines, also known as diazanaphthalenes, are a group of heterocyclic compounds that include six isomeric bicyclic systems containing two pyridine rings. 1,6-Naphthyridines are one of the members of such a family capable of providing ligands for several receptors in the body. Among such structures, 1,6-naphthyridin-2(1H)-ones (7) are a subfamily that includes more than 17,000 compounds (with a single or double bond between C3 and C4) included in more than 1000 references (most of them patents). This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, C7, and C8 of 1,6-naphthyridin-2(1H)-ones, the synthetic methods used for their synthesis (both starting from a preformed pyridine or pyridone ring), and the biomedical applications of such compounds.

13.
Comput Struct Biotechnol J ; 19: 51-61, 2021.
Article in English | MEDLINE | ID: mdl-33363709

ABSTRACT

Myotonic Dystrophy type 1 (DM1) is an incurable neuromuscular disorder caused by toxic DMPK transcripts that carry CUG repeat expansions in the 3' untranslated region (3'UTR). The intrinsic complexity and lack of crystallographic data makes noncoding RNA regions challenging targets to study in the field of drug discovery. In DM1, toxic transcripts tend to stall in the nuclei forming complex inclusion bodies called foci and sequester many essential alternative splicing factors such as Muscleblind-like 1 (MBNL1). Most DM1 phenotypic features stem from the reduced availability of free MBNL1 and therefore many therapeutic efforts are focused on recovering its normal activity. For that purpose, herein we present pyrido[2,3-d]pyrimidin-7-(8H)-ones, a privileged scaffold showing remarkable biological activity against many targets involved in human disorders including cancer and viral diseases. Their combination with a flexible linker meets the requirements to stabilise DM1 toxic transcripts, and therefore, enabling the release of MBNL1. Therefore, a set of novel pyrido[2,3-d]pyrimidin-7-(8H)-ones derivatives (1a-e) were obtained using click chemistry. 1a exerted over 20% MBNL1 recovery on DM1 toxic RNA activity in primary cell biology studies using patient-derived myoblasts. 1a promising anti DM1 activity may lead to subsequent generations of ligands, highlighting a new affordable treatment against DM1.

14.
Org Biomol Chem ; 18(48): 9810-9815, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33000855

ABSTRACT

Wheland intermediates are usually unstable compounds and only a few have been isolated at very low temperatures. During our work on tyrosine kinase inhibitors, we studied the bromination of 7 in order to obtain a dibromo substituted pyrido[2,3-d]pyrimidin-7(8H)-one which could be orthogonally decorated. Surprisingly, treatment of 7 with 3 equiv. of Br2 in acetic acid (AcOH) afforded 12, a captured room temperature stable Wheland bromination intermediate stabilized by the bromination of the imino tautomer of the amino group at C4 of the pyridopyrimidine skeleton. The structure was confirmed by crystal structure determination from powder X-ray diffraction data. Treatment of 12 with DMSO afforded the dibromo substituted compound 13 presenting a bromine atom at C6 and C5-C6 unsaturation. 13 was directly accessed by treating 7 with N-bromosuccinimide (NBS), a protocol extended to other compounds using NBS or N-iodosuccinimide (NIS) to afford 6-halo substituted systems. 26, bearing an iodine at C6 and a p-bromophenylamino at C2, allows the orthogonal decoration of pyridopyrimidines.

15.
Org Biomol Chem ; 18(27): 5145-5156, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32583833

ABSTRACT

Pyrazol-3-amine is a scaffold present in a large number of compounds with a wide range of biological activities and, in many cases, the heterocycle is C4-C5 fused to a second ring. Among the different reactions used for the decoration of the pyrazole ring, Ullmann and acylation have been widely applied. However, there is some confusion in the literature regarding the regioselectivity of such reactions (substitution at N1 or N2 of the pyrazole ring) and no predictive rule has been so far established. As a part of our work on 3-amino-pyrazolo[3,4-b]pyridones 13, we have studied the regioselectivity of such reactions in different C4-C5 fused pyrazol-3-amines. As a rule of thumb, the Ullmann and acylation reactions take place, predominantly, at the NH and non-protonated nitrogen atom of the pyrazole ring respectively, of the most stable initial tautomer (1H- or 2H-pyrazole), which can be easily predicted by using DFT calculations.

16.
Molecules ; 24(22)2019 Nov 16.
Article in English | MEDLINE | ID: mdl-31744155

ABSTRACT

Pyrido[2,3-d]pyrimidines (1) are a type of privileged heterocyclic scaffolds capable of providing ligands for several receptors in the body. Among such structures, our group and others have been particularly interested in pyrido[2,3-d]pyrimidine-7(8H)-ones (2) due to the similitude with nitrogen bases present in DNA and RNA. Currently there are more than 20,000 structures 2 described which correspond to around 2900 references (half of them being patents). Furthermore, the number of references containing compounds of general structure 2 have increased almost exponentially in the last 10 years. The present review covers the synthetic methods used for the synthesis of pyrido[2,3-d]pyrimidine-7(8H)-ones (2), both starting from a preformed pyrimidine ring or a pyridine ring, and the biomedical applications of such compounds.


Subject(s)
Pyrimidinones/chemical synthesis , Pyrimidinones/pharmacology , Chemistry Techniques, Synthetic , Molecular Structure , Pyrimidines/chemistry , Pyrimidinones/chemistry , Structure-Activity Relationship
17.
Haematologica ; 104(4): 778-788, 2019 04.
Article in English | MEDLINE | ID: mdl-29954928

ABSTRACT

Constitutive activation of the chemokine receptor CXCR4 has been associated with tumor progression, invasion, and chemotherapy resistance in different cancer subtypes. Although the CXCR4 pathway has recently been suggested as an adverse prognostic marker in diffuse large B-cell lymphoma, its biological relevance in this disease remains underexplored. In a homogeneous set of 52 biopsies from patients, an antibody-based cytokine array showed that tissue levels of CXCL12 correlated with high microvessel density and bone marrow involvement at diagnosis, supporting a role for the CXCL12-CXCR4 axis in disease progression. We then identified the tetra-amine IQS-01.01RS as a potent inverse agonist of the receptor, preventing CXCL12-mediated chemotaxis and triggering apoptosis in a panel of 18 cell lines and primary cultures, with superior mobilizing properties in vivo than those of the standard agent. IQS-01.01RS activity was associated with downregulation of p-AKT, p-ERK1/2 and destabilization of MYC, allowing a synergistic interaction with the bromodomain and extra-terminal domain inhibitor, CPI203. In a xenotransplant model of diffuse large B-cell lymphoma, the combination of IQS-01.01RS and CPI203 decreased tumor burden through MYC and p-AKT downregulation, and enhanced the induction of apoptosis. Thus, our results point out an emerging role of CXCL12-CXCR4 in the pathogenesis of diffuse large B-cell lymphoma and support the simultaneous targeting of CXCR4 and bromodomain proteins as a promising, rationale-based strategy for the treatment of this disease.


Subject(s)
Acetamides/pharmacology , Azepines/pharmacology , Lymphoma, Large B-Cell, Diffuse , MAP Kinase Signaling System/drug effects , Receptors, CXCR4/metabolism , Animals , Biopsy , Cell Line, Tumor , Chemokine CXCL12/metabolism , Female , Humans , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Xenograft Model Antitumor Assays
18.
PLoS One ; 12(6): e0178931, 2017.
Article in English | MEDLINE | ID: mdl-28582438

ABSTRACT

Myotonic dystrophy type 1 (DM1) is a rare multisystemic disorder associated with an expansion of CUG repeats in mutant DMPK (dystrophia myotonica protein kinase) transcripts; the main effect of these expansions is the induction of pre-mRNA splicing defects by sequestering muscleblind-like family proteins (e.g. MBNL1). Disruption of the CUG repeats and the MBNL1 protein complex has been established as the best therapeutic approach for DM1, hence two main strategies have been proposed: targeted degradation of mutant DMPK transcripts and the development of CUG-binding molecules that prevent MBNL1 sequestration. Herein, suitable CUG-binding small molecules were selected using in silico approaches such as scaffold analysis, similarity searching, and druggability analysis. We used polarization assays to confirm the CUG repeat binding in vitro for a number of candidate compounds, and went on to evaluate the biological activity of the two with the strongest affinity for CUG repeats (which we refer to as compounds 1-2 and 2-5) in DM1 mutant cells and Drosophila DM1 models with an impaired locomotion phenotype. In particular, 1-2 and 2-5 enhanced the levels of free MBNL1 in patient-derived myoblasts in vitro and greatly improved DM1 fly locomotion in climbing assays. This work provides new computational approaches for rational large-scale virtual screens of molecules that selectively recognize CUG structures. Moreover, it contributes valuable knowledge regarding two compounds with desirable biological activity in DM1 models.


Subject(s)
Anabolic Agents/pharmacology , Benzamidines/pharmacology , Drosophila Proteins/antagonists & inhibitors , Myotonic Dystrophy/drug therapy , Myotonin-Protein Kinase/antagonists & inhibitors , Pyrimidines/pharmacology , Small Molecule Libraries/pharmacology , Alternative Splicing , Anabolic Agents/chemistry , Animals , Benzamidines/chemistry , Disease Models, Animal , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster , Drug Discovery , Humans , Locomotion/drug effects , Molecular Docking Simulation , Myoblasts/drug effects , Myoblasts/metabolism , Myoblasts/pathology , Myotonic Dystrophy/genetics , Myotonic Dystrophy/metabolism , Myotonic Dystrophy/pathology , Myotonin-Protein Kinase/chemistry , Myotonin-Protein Kinase/genetics , Myotonin-Protein Kinase/metabolism , Primary Cell Culture , Pyrimidines/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Trinucleotide Repeat Expansion/drug effects
19.
J Org Chem ; 82(13): 6904-6912, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28548830

ABSTRACT

The preparation and characterization of a family of stable 2,2'-bipyrroles substituted at positions 5 and 5' with thienyl, phenyl, TMS-ethynyl, and vinyl groups is reported herein. The synthesis of these new bipyrroles comprises three steps: formation of the corresponding 5,5'-unsubstituted bipyrrole, bromination, and Stille or Suzuki coupling. The best results in the coupling are obtained using the Stille reaction under microwave irradiation. The new compounds have been fully characterized by UV-vis absorption, fluorescence, and IR spectroscopies and cyclic voltammetry. X-ray single-crystal analysis of four of the synthesized bipyrroles indicates a trans coplanar geometry of the pyrrole rings. Furthermore, the substituents at positions 5,5' remain coplanar to the central rings. This particular geometry extends the π-conjugation of the systems, which is in agreement with a red-shifting observed for the λmax of the substituted molecules compared to the unsubstituted bipyrrole. All of these new compounds display a moderate fluorescence. In contrast with unsubstituted bipyrroles, these bipyrroles are endowed with a high chemical and thermal stability and solubility in organic solvents.

20.
Eur J Med Chem ; 115: 463-83, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27054294

ABSTRACT

The design and selection of a combinatorial library of pyrido[2,3-d]pyrimidin-7(8H)-ones (4) has allowed the synthesis of 121 compounds, using known and new synthetic methodologies, and the evaluation of the inhibitory activity against hepatitis C virus (HCV) genotype 1b replicon. Among these compounds, 21{4,10} and 24{2,10} presented very high activities [EC50 = 0.027 µM (CC50 = 5.3 µM) and EC50 = 0.034 µM (CC50 = 13.5 µM), respectively] and high selectivity indexes, 196 and 397. These values are similar to the EC50 reported for sofosbuvir (2) (0.048 µM) using a similar methodological approach and the same virus subtype. 21{4,10} and 24{2,10} are obtained through shorter synthetic itineraries than sofosbuvir and 24{2,10} is achiral contrary to sofosbuvir which presents 4 stereogenic centers. In silico studies suggest that 21{4,10} and 24{2,10} inhibits NS5B polymerase through allosteric site binding.


Subject(s)
Hepacivirus/drug effects , Pyrimidines/chemistry , Pyrimidines/pharmacology , Drug Design , Drug Evaluation, Preclinical , Molecular Docking Simulation , Pyrimidines/chemical synthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...