Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Alcohol Alcohol ; 35(2): 159-63, 2000.
Article in English | MEDLINE | ID: mdl-10787391

ABSTRACT

In order to investigate the pathogenic mechanism responsible for liver injury associated with chronic alcoholism, we studied the effects of different dietary vitamin E levels in chronically ethanol (EtOH)-fed rats on the activity and mRNA regulation of the manganese superoxide dismutase (MnSOD) enzyme. Evidence is accumulating that intermediates of oxygen reduction may in fact be associated with the development of alcoholic liver disease. Since low vitamin E liver content seems to potentiate EtOH-linked oxidative stress, we studied the effect of EtOH treatment in livers from rats fed a diet deficient or supplemented with vitamin E. Chronic EtOH feeding enhanced hepatic consumption of vitamin E in both groups of EtOH-treated animals, irrespectively of the vitamin E level of the basal diet and the effect was observed in both the microsomal and mitochondrial fractions. Both EtOH-fed groups exhibited increased MnSOD gene expression, while the enzyme activity was enhanced only in the vitamin E-deprived group of EtOH-treated animals. The significant increase in manganese liver content found only in this last group could explain the rise of enzyme activity. In fact, in the absence of a parallel increase of the prosthetic ion manganese, MnSOD mRNA induction was not accompanied by a higher enzymatic activity. These findings support the role of oxidative alteration in the EtOH-induced chronic hepatotoxicity in which MnSOD response might represent a primary defence mechanism against the damaging effect of oxygen radical species.


Subject(s)
Alcoholism , Disease Models, Animal , Ethanol/pharmacology , Food, Formulated , Superoxide Dismutase/drug effects , Vitamin E Deficiency/diagnosis , Vitamin E/pharmacology , Animals , Behavior, Animal/drug effects , Chronic Disease , Male , RNA, Messenger/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...