Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 242(Pt 3): 124941, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37210063

ABSTRACT

Acetylated Kraft lignins were evaluated for their ability of structuring vegetable oils into oleogels. Microwave-assisted acetylation was used to adjust lignin's degree of substitution according to reaction temperature (130 to 160 °C), and its effect in improving the viscoelasticity of the oleogels, which was related to the hydroxyl group content. The results were compared with those obtained by Kraft lignins acetylated using conventional methods at room temperature. A higher microwave temperature resulted in gel-like oil dispersions with improved viscoelastic properties, and stronger shear-thinning character, along with enhanced long-term stability. Lignin nanoparticles structured castor oil by enhancing hydrogen bonding between the hydroxyl groups of the oil and the nanoparticles. The oil structuring capacity of the modified lignins enhanced the stability of water-in-oil Pickering emulsions that resulted from low-energy mixing.


Subject(s)
Lignin , Organic Chemicals , Emulsions , Water
2.
Polymers (Basel) ; 14(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36235923

ABSTRACT

This review focuses on the description of the main processes and materials used for the formulation of rigid polymer foams. Polyurethanes and their derivatives, as well as phenolic systems, are described, and their main components, foaming routes, end of life, and recycling are considered. Due to environmental concerns and the need to find bio-based alternatives for these products, special attention is given to a recent class of polymeric foams: tannin-based foams. In addition to their formulation and foaming procedures, their main structural, thermal, mechanical, and fire resistance properties are described in detail, with emphasis on their advanced applications and recycling routes. These systems have been shown to possess very interesting properties that allow them to be considered as potential substitutes for non-renewable rigid polymeric cellular foams.

3.
Polymers (Basel) ; 14(17)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36080674

ABSTRACT

The need to find suitable biomaterials and procedures from alternative products able to imitate or even enhance the performance of currently used products has become an important focus of research today due to the depletion of non-renewable resources and the increasing concern related to climate change, sustainability and environmental preservation [...].

4.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267704

ABSTRACT

The present review is devoted to the description of the state-of-the-art techniques and procedures concerning treatments and modifications of lignocellulosic materials in order to use them as precursors for biomaterials, biochemicals and biofuels, with particular focus on lignin and lignin-based products. Four different main pretreatment types are outlined, i.e., thermal, mechanical, chemical and biological, with special emphasis on the biological action of fungi and bacteria. Therefore, by selecting a determined type of fungi or bacteria, some of the fractions may remain unaltered, while others may be decomposed. In this sense, the possibilities to obtain different final products are massive, depending on the type of microorganism and the biomass selected. Biofuels, biochemicals and biomaterials derived from lignocellulose are extensively described, covering those obtained from the lignocellulose as a whole, but also from the main biopolymers that comprise its structure, i.e., cellulose, hemicellulose and lignin. In addition, special attention has been paid to the formulation of bio-polyurethanes from lignocellulosic materials, focusing more specifically on their applications in the lubricant, adhesive and cushioning material fields. High-performance alternatives to petroleum-derived products have been reported, such as adhesives that substantially exceed the adhesion performance of those commercially available in different surfaces, lubricating greases with tribological behaviour superior to those in lithium and calcium soap and elastomers with excellent static and dynamic performance.

5.
Int J Biol Macromol ; 195: 412-423, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34871659

ABSTRACT

Lignin-enriched waste products from bioethanol production of agriculture residues were tested as structuring agents in castor oil once functionalized with hexamethylene diisocyanate. Cane bagasse, barley and wheat straw were processed through steam explosion, pre-saccharification and simultaneous saccharification and fermentation (PSSF). Alternatively, cane bagasse was submitted to steam explosion and enzymatic hydrolysis (EH). Several Nuclear Magnetic Resonance techniques were used to characterize both residues and NCO-functionalized counterparts. The ß-O-4'/resinol/phenylcoumaran content and hydroxyphenyl/guaiacyl/syringyl distribution depend on biomass source, pretreatment, and enzymatic hydrolysis. Total hydroxyl content (from 1.23 for cane bagasse to 1.85 for wheat straw residues), aromatic/aliphatic hydroxyl ratio (0.78 for cane bagasse and 0.61 and 0.49 for barley and wheat straw residues, respectively) and S/G ratio (ranging from 0.25 to 0.86) influence the NCO-functionalization and oleogel rheological response. Oleogels obtained with barley straw residues exhibited the highest values of the storage modulus; around 2 × 105 Pa and 104 Pa for 25% and 20% contents, respectively. PSSF process showed weaker modification, leading to softer viscoelastic response compared to EH. These oleogels exhibited rheological properties similar to lubricating greases of different NLGI grades. Therefore, we herein show an integrative protocol for the valorization of lignin-enriched residues from bioethanol production as potential thickeners of lubricating greases.


Subject(s)
Ethanol/metabolism , Lignin/chemistry , Biomass , Cellulose/chemistry , Ethanol/chemistry , Fermentation/physiology , Hordeum/chemistry , Hydrolysis , Isocyanates/chemistry , Lubricants/chemical synthesis , Organic Chemicals/chemistry , Steam , Triticum/chemistry
6.
Polymers (Basel) ; 13(2)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467395

ABSTRACT

The development of biological strategies to obtain new high-added value biopolymers from lignocellulosic biomass is a current challenge for scientific community. This study evaluates the biodegradability and ecotoxicity of new formulated oleogels obtained from fermented agricultural residues with Streptomyces, previously reported to show improved rheological and tribological characteristics compared to commercial mineral lubricants. Both new oleogels exhibited higher biodegradation rates than the commercial grease. Classical ecotoxicological bioassays using eukaryotic organisms (Lactuca sativa, Caenorhabditis elegans) showed that the toxic impact of the produced bio-lubricants was almost negligible and comparable to the commercial grease for the target organisms. In addition, high throughput molecular techniques using emerging next-generation DNA-sequencing technologies (NGS) were applied to study the structural changes of lubricant-exposed microbial populations of a standard soil. Results obtained showed that disposal of biomass-based lubricants in the soil environment did not substantially modify the structure and phylogenetic composition of the microbiome. These findings point out the feasibility and sustainability, in terms of biodegradability and eco-safety, of the new bio-lubricants in comparison with commercial mineral greases. This technology entails a promising biological strategy to replace fossil and non-renewable raw materials as well as to obtain useful biopolymers from agricultural residues with potential for large-scale applications.

7.
Polymers (Basel) ; 14(1)2021 Dec 25.
Article in English | MEDLINE | ID: mdl-35012091

ABSTRACT

In order to identify new sustainable sources for producing cellulose nanofibers (CNFs), fast-growing poplar (Populus alba L.) wood was evaluated herein. For that purpose, bleached poplar kraft pulp was produced and submitted to TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) mediated oxidation (TEMPO-ox) chemical pretreatment followed by microfluidization. The resulting CNFs were thoroughly characterized, including a rheological study at different pH values. Poplar CNFs showed properties comparable to eucalypt CNFs (reference material for CNFs production), showing high carboxylate content (1048 ± 128 µmol g-1), fibrillation yield (87.3% ± 8.1%), optical transmittance (83% at 700 nm) and thermal stability (up to more than 200 °C). Regarding the rheological study, whereas pH from 4 to 10 did not produce significant changes in rheological behavior, a reduction of pH down to 1 led to an order-of-magnitude increase on the viscoelastic functions. Therefore, poplar CNF shows potential in the pH-sensitive hydrogels application field. Finally, the possible ecotoxicity of poplar CNF was assessed. The decrease in cell viability was very low so that only concentrations causing a 10% cytotoxicity could be calculated for the assay detecting alterations in cell metabolism (10 µg mL-1) and plasma membrane integrity (60 µg mL-1).

8.
Polymers (Basel) ; 12(12)2020 Nov 27.
Article in English | MEDLINE | ID: mdl-33261191

ABSTRACT

The replacement of mineral oils and non-renewable gelling agents is an imperative requirement for the lubricant industry in the near future. In this framework, cellulose pulp and castor oil are proposed as sustainable substitutes for these components. Biological treatment has been explored and evaluated to enhance the dispersing and thickening properties of cellulose pulp in oil media. Streptomyces sp. MDG147 and MDG301 strains were employed to modify agricultural wheat and barley straw residues from which cellulose pulp was obtained afterwards. In addition, an environmentally friendly process for the production of cellulose-pulp-/castor-oil-based polyurethanes was applied, in which neither catalysts nor harmful solvents were used, resulting in chemical oleogels. These oleogels were rheologically and tribologically characterized to evaluate their performance as lubricating greases. The enzymatic activity pattern developed was dependent on the raw material, the strain type, and the temperature, influencing the cellulose pulp's composition, polymerization degree, and crystallinity. These modified characteristics tuned the rheological behavior of the different oleogels, providing a beneficial range of viscoelastic responses and viscosity values that were generally favored by the Streptomyces action. Furthermore, the friction coefficient and dimensions of wear scars measured in a tribological contact were comparable to, or even lower than, those found with commercial and other bio-based lubricating greases that have previously been studied.

9.
Int J Biol Macromol ; 162: 1398-1413, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32771513

ABSTRACT

This study explores the suitability of residual lignin-containing fractions generated as side-streams in different conversion processes of eucalypt and pine woods as thickening agents in bio-lubricant formulations. These conversion processes included fermentable sugars extraction by autohydrolysis or steam explosion and kraft pulping. Structural properties of lignin fractions were characterized by FTIR, 1H and 13C NMR, two-dimensional NMR, TGA and SEC, whereas their compositions were analysed by standard analytical methods. On the other hand, chemical oleogels were prepared with NCO-functionalized residual lignin fractions, and characterized by means of rheological, tribological and AFM techniques. Hydrolysis lignin fractions exhibited a great content of carbohydrates, especially glucose (46.0-48.5%), xylose (4.3-15.6%) and lignin (32.5-39.9%) with a well-maintained structure, displaying the main inter-unit linkages and low phenolic content. By contrast, kraft lignin fractions presented a lower carbohydrate content, mainly xylose (3.4-4.3%), and higher content (44.9-67%) of severely degraded lignin, showing a dramatic reduction of inter-unit linkages, and thereby high phenolic content. The rheological response of NCO-functionalized lignin fractions-based oleogels is highly influenced by the composition and chemical structure of residual lignin fractions. Moreover, these oleogels presented suitable tribological properties with values of the friction coefficient lower than those typically exhibited by standard lubricating greases.


Subject(s)
Biocompatible Materials/chemistry , Biomass , Lignin/chemistry , Lubricants/chemistry , Chromatography, Gel , Hydrolysis , Magnetic Resonance Spectroscopy , Microscopy, Atomic Force , Spectroscopy, Fourier Transform Infrared , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...