Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38730767

ABSTRACT

Zirconia-reinforced lithium silicate (ZLS) is utilized as a material for prosthetic tooth crowns, offering enhanced strength compared to other dental glass-ceramics. In this study, we investigate a commercial ZLS material, provided in a fully crystallized form. We examine the effects of an optional post-processing heat treatment on micro-contact damage using controlled indentation tests simulating the primary modes of contact during chewing: axial and sliding. Our findings indicate that the heat treatment does not affect mechanical properties such as the elastic modulus, hardness and indentation fracture toughness. However, it does enhance the resistance to contact damage by fracture and chipping in both axial and sliding modes, as well as the resistance to crack initiation measured from sliding tests. This improvement is attributed to the refinement of the flaw population achieved through the heat treatment. The results are analysed using principles of contact and fracture mechanics theory, discussing their significance in prosthetic dentistry.

2.
Acta Mater ; 2322022 Jun 15.
Article in English | MEDLINE | ID: mdl-37599815

ABSTRACT

Threshold damage mechanisms in brittle covalent-ionic solids are outlined. Fracture and deformation modes are analyzed in terms of classical contact mechanics. Distinctions are made between brittle, ductile and quasiplastic mechanisms in both axial and translational contact. Special attention is devoted to the relatively unexplored subthreshold region where macrofracture is largely suppressed, a region of increasing relevance in the relentless move toward ever smaller devices and precision shaping technologies in the manufacturing sector. Cross-section micrographic images illustrate the fundamental nature of shear events within the hardness deformation zone responsible for crack initiation and propagation. Basic analytical relations for the strengths of surfaces with contact-induced damage in the postthreshold and subthreshold regions are presented, with emphasis on concept rather than fine detail. Strength data for a prototypical brittle material after sharp-indenter damage are presented to highlight the vital role of microstructure in determining transitions between brittle and quasiplastic responses. Pristine defect-free solids are shown to be highly vulnerable to contact damage, even in the subthreshold region. Heterogeneous solids with granular microstructures have lower initial strengths, but are more flaw tolerant. Brittle solids are also highly susceptible to degradation by surface removal processes in wear and machining settings, to a large extent depending again on microstructure. Implications of these findings concerning advanced technological applications of covalent-ionic solids are discussed.

3.
Interface Focus ; 11(5): 20200070, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34938431

ABSTRACT

Until recently, there had been little attempt in the literature to identify and quantify the underlying mechanics of tooth durability in terms of materials engineering concepts. In humans and most mammals, teeth must endure a lifetime of sustained occlusal mastication-they have to resist fracture and wear. It is well documented that teeth are resilient, but what are the unique features that make this possible? The present article surveys recent materials engineering research aimed at addressing this fundamental question. Elements that determine the mechanics and micromechanics of tooth fracture and wear are analysed: at the macrostructural level, the geometry of the enamel shell and cuspal configuration; and at the microstructural level, interfacial weakness and property gradients. Inferences concerning dietary history in relation to evolutionary pressures are discussed.

4.
J Am Ceram Soc ; 104(1): 5-22, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34565803

ABSTRACT

Hard and brittle solids with covalent/ionic bonding are used in a wide range of modern-day manufacturing technologies. Optimization of a shaping process can shorten manufacturing time and cost of component production, and at the same time extend component longevity. The same process may contribute to wear and fatigue degradation in service. Educated development of advanced finishing protocols for this class of solids requires a comprehensive understanding of damage mechanisms at small-scale contacts from a materials science perspective. In this article the fundamentals of brittle-ductile transitions in indentation stress fields are surveyed, with distinctions between axial and sliding loading and blunt and sharp contacts. Attendant deformation and removal mechanisms in microcontact processes are analyzed and discussed in the context of brittle and ductile machining and severe and mild wear. The central role of material microstructure in material removal modes is demonstrated.

5.
J R Soc Interface ; 17(172): 20200613, 2020 11.
Article in English | MEDLINE | ID: mdl-33143592

ABSTRACT

Comparative laboratory sliding wear tests on extracted human molar teeth in artificial saliva with third-body particulates demonstrate that phytoliths can be as effective as silica grit in the abrasion of enamel. A pin-on-disc wear testing configuration is employed, with an extracted molar cusp as a pin on a hard disc antagonist, under loading conditions representative of normal chewing forces. Concentrations and sizes of phytoliths in the wear test media match those of silica particles. Cusp geometries and ensuing abrasion volumes are measured by digital profilometry. The wear data are considered in relation to a debate by evolutionary biologists concerning the relative capacities of intrinsic mineral bodies within plant tissue and exogenous grit in the atmosphere to act as agents of tooth wear in various animal species.


Subject(s)
Tooth Wear , Animals , Humans , Mastication , Molar , Plants , Silicon Dioxide
6.
Biol Lett ; 16(8): 20200498, 2020 08.
Article in English | MEDLINE | ID: mdl-32842897

ABSTRACT

Teeth of omnivores face a formidable evolutionary challenge: how to protect against fracture and abrasive wear caused by the wide variety of foods they process. It is hypothesized that this challenge is met in part by adaptations in enamel microstructure. The low-crowned teeth of humans and some other omnivorous mammals exhibit multiple fissures running longitudinally along the outer enamel walls, yet remain intact. It is proposed that inter-prism weakness and enamel property gradation act together to avert entry of these fissures into vulnerable inner tooth regions and, at the same time, confer wear resistance at the occlusal surface. A simple indentation experiment is employed to quantify crack paths and energetics in human enamel, and an extended-finite-element model to evaluate longitudinal crack growth histories. Consideration is given as to how tooth microstructure may have played a vital role in human evolution, and by extension to other omnivorous mammals.


Subject(s)
Tooth Fractures , Tooth , Animals , Dental Enamel , Humans
7.
J Mech Behav Biomed Mater ; 105: 103722, 2020 05.
Article in English | MEDLINE | ID: mdl-32279844

ABSTRACT

The objective of this study is to elucidate the interdependence of competing mechanical degradation processes in biphasic dental materials with ceramic constituents in the region of high-pressure occlusal loading. It is hypothesized that wear resistance in this region correlates inversely with basic material parameters (modulus, hardness, toughness, strength) evaluated from 'standardized' test specimens. Ball-on-flat wear tests in simulation of oral function are used to quantify susceptibility to protracted sliding contact damage. Wear rates for this class of dental material tend to increase with quasistatic parameter values, so the latter do not provide a reliable guide to longevity. The generation of severe-wear facets involves cumulative quasiplastic deformation and microcrack coalescence at the grain level. It is implied that interplay between wear and fracture mechanisms should be an important consideration in future microstructural design of dental ceramics, especially in the quest to balance durability against esthetics.


Subject(s)
Ceramics , Mechanical Phenomena , Dental Materials , Dental Porcelain , Hardness , Materials Testing , Surface Properties
8.
J Mech Behav Biomed Mater ; 102: 103512, 2020 02.
Article in English | MEDLINE | ID: mdl-31877519

ABSTRACT

The damage to human dental enamel under cyclic, axial contacts in a silica particle medium is investigated. It is found that such damage is hierarchical, affecting different length-scales of the enamel structure. At the contact surface, it consists of micron-sized defects, with an attendant increase of surface roughness due to microindentation of the abrasive particles. Below the surface, demineralization of the enamel is observed, which is attributable to inelastic processes at the nanoscale. Axial-only contacts in particulate media result in negligible wear at the macroscopic scale, but may degrade the fracture strength. Potential implications of these results in the fields of dentistry and biology are discussed.


Subject(s)
Dental Enamel , Humans , Surface Properties , Weight-Bearing
9.
Dent Mater ; 35(5): 697-708, 2019 05.
Article in English | MEDLINE | ID: mdl-30827800

ABSTRACT

OBJECTIVE: To elucidate the microstructural evolution of a commercial dental-grade lithium disilicate glass-ceramic using a wide battery of in-situ and ex-situ characterization techniques. METHODS: In-situ X-ray thermo-diffractometry experiments were conducted on a commercially available dental-grade lithium disilicate glass-ceramic under both non-isothermal and isothermal heat treatments in air. These analyses were complemented by experiments of ex-situ X-ray diffractometry, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, and field-emission scanning electron thermo-microscopy. RESULTS: It was found that the non-fired blue block consists of ∼40 vol % crystals embedded in a glass matrix. The crystals are mainly lithium metasilicate (Li2SiO3) along with small amounts of lithium orthophosphate (Li3PO4) and lithium disilicate (Li2Si2O5). Upon heating, the glassy matrix in the as-received block first crystallizes partially as SiO2 (i.e., cristobalite) at ∼660 °C. Then, the SiO2 crystals react with the original Li2SiO3 crystals at ∼735 °C, forming the desired Li2Si2O5 crystals by a solid-state reaction in equimolar concentration (SiO2 + Li2SiO3 → Li2Si2O5). Precipitation of added colourant Ce ions in the form of CeO2 appears at ∼775 °C. These events result in a glass-ceramic material with the aesthetic quality and mechanical integrity required for dental restorations. It also has a microstructure consisting essentially of elongated Li2Si2O5 grains in a glassy matrix plus small cubic CeO2 grains at the outermost part of the surface. SIGNIFICANCE: It was found that by judiciously controlling the heat treatment parameters, it is possible to tailor the microstructure of the resulting glass-ceramics and thus optimizing their performance and lifespan as dental restorations.


Subject(s)
Hot Temperature , Silicon Dioxide , Ceramics , Dental Porcelain , Materials Testing , Microscopy, Electron, Scanning , Surface Properties
10.
J Mech Behav Biomed Mater ; 92: 144-151, 2019 04.
Article in English | MEDLINE | ID: mdl-30685728

ABSTRACT

An investigation is made of wear mechanisms in a suite of dental materials with a ceramic component and tooth enamel using a laboratory test that simulates clinically observable wear facets. A ball-on-3-specimen wear tester in a tetrahedral configuration with a rotating hard antagonist zirconia sphere is used to produce circular wear scars on polished surfaces of dental materials in artificial saliva. Images of the wear scars enable interpretation of wear mechanisms, and measurements of scar dimensions quantify wear rates. Rates are lowest for zirconia ceramics, highest for lithium disilicate, with feldspathic ceramic and ceramic-polymer composite intermediate. Examination of wear scars reveals surface debris, indicative of a mechanism of material removal at the microstructural level. Microplasticity and microcracking models account for mild and severe wear regions. Wear models are used to evaluate potential longevity for each dental material. It is demonstrated that controlled laboratory testing can identify and quantify wear susceptibility under conditions that reflect the essence of basic occlusal contact. In addition to causing severe material loss, wear damage can lead to premature tooth or prosthetic failure.


Subject(s)
Ceramics , Dental Materials , Mechanical Phenomena , Dental Enamel , Humans , Materials Testing
11.
J Mech Behav Biomed Mater ; 80: 77-80, 2018 04.
Article in English | MEDLINE | ID: mdl-29414478

ABSTRACT

Results are presented for wear tests on human molar enamel in silica particle mediums. Data for different particle concentrations show severe wear indicative of material removal by plasticity-induced microcrack formation, in accordance with earlier studies. The wear rates are independent of low vol% particles, consistent with theoretical models in which occlusal loads are distributed evenly over all interfacial microcontacts. However, perhaps counter-intuitively, the wear rate diminishes substantially at higher vol%. This is attributed to a greater proportion of lower-load microcontacts transitioning into a region of mild wear, where microcracking is suppressed. Implications of these results in relation to evolutionary biology and dentistry are explored.


Subject(s)
Dental Enamel/chemistry , Molar/physiopathology , Stress, Mechanical , Tooth Wear/physiopathology , Humans , Surface Properties
12.
Bioessays ; 38(1): 89-99, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26643447

ABSTRACT

The deformation and wear events that underlie microwear and macrowear signals commonly used for dietary reconstruction in fossil animals can be replicated and quantified by controlled laboratory tests on extracted tooth specimens in conjunction with fundamental micromechanics analysis. Key variables governing wear relations include angularity, stiffness (modulus), and size of the contacting particle, along with material properties of enamel. Both axial and sliding contacts can result in the removal of tooth enamel. The degree of removal, characterized by a "wear coefficient," varies strongly with particle content at the occlusal interface. Conditions leading to a transition from mild to severe wear are discussed. Measurements of wear traces can provide information about contact force and particle shape. The potential utility of the micromechanics methodology as an adjunct for investigating tooth durability and reconstructing diet is explored.


Subject(s)
Diet , Feeding Behavior/physiology , Fossils , Tooth/physiology , Animals , Dental Enamel/physiology , Paleontology , Tooth Wear
13.
Acta Biomater ; 14: 146-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25484336

ABSTRACT

It is hypothesized that microwear traces in natural tooth enamel can be simulated and quantified using microindentation mechanics. Microcontacts associated with particulates in the oral wear medium are modeled as sharp indenters with fixed semi-apical angle. Distinction is made between markings from static contacts (pits) and translational contacts (scratches). Relations for the forces required to produce contacts of given dimensions are derived, with particle angularity and compliance specifically taken into account so as to distinguish between different abrasives in food sources. Images of patterns made on human enamel with sharp indenters in axial and sliding loading are correlated with theoretical predictions. Special attention is given to threshold conditions for transition from a microplasticity to a microcracking mode, corresponding to mild and severe wear domains. It is demonstrated that the typical microwear trace is generated at loads on the order of 1N - i.e. much less than the forces exerted in normal biting - attesting to the susceptibility of teeth to wear in everyday mastication, especially in diets with sharp, hard and large inclusive intrinsic or extraneous particulates.


Subject(s)
Dental Enamel/pathology , Dental Stress Analysis , Tooth/pathology , Adult , Biomechanical Phenomena , Dental Enamel/ultrastructure , Humans , Microscopy, Electron, Scanning , Pressure , Tooth/ultrastructure
14.
J Mech Behav Biomed Mater ; 37: 226-34, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24953823

ABSTRACT

It is hypothesized that wear of enamel is sensitive to the presence of sharp particulates in oral fluids and masticated foods. To this end, a generic model for predicting wear rates in brittle materials is developed, with specific application to tooth enamel. Wear is assumed to result from an accumulation of elastic-plastic micro-asperity events. Integration over all such events leads to a wear rate relation analogous to Archard׳s law, but with allowance for variation in asperity angle and compliance. The coefficient K in this relation quantifies the wear severity, with an arbitrary distinction between 'mild' wear (low K) and 'severe' wear (high K). Data from the literature and in-house wear-test experiments on enamel specimens in lubricant media (water, oil) with and without sharp third-body particulates (silica, diamond) are used to validate the model. Measured wear rates can vary over several orders of magnitude, depending on contact asperity conditions, accounting for the occurrence of severe enamel removal in some human patients (bruxing). Expressions for the depth removal rate and number of cycles to wear down occlusal enamel in the low-crowned tooth forms of some mammals are derived, with tooth size and enamel thickness as key variables. The role of 'hard' versus 'soft' food diets in determining evolutionary paths in different hominin species is briefly considered. A feature of the model is that it does not require recourse to specific material removal mechanisms, although processes involving microplastic extrusion and microcrack coalescence are indicated.


Subject(s)
Dental Enamel , Mechanical Phenomena , Models, Biological , Biomechanical Phenomena , Humans , Materials Testing , Stress, Mechanical
15.
J Biomed Mater Res B Appl Biomater ; 99(1): 58-69, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21714076

ABSTRACT

The success of implants in orthopaedic and dental load-bearing applications crucially depends on the initial biological fixation of implants in surrounding bone tissues. Using hydroxyapatite (HA) coating on Ti implant as carrier for bone morphogenetic proteins (BMPs) may promote the osteointegration of implants; therefore, reduce the risk of implant failure. The goal of this study was to develop an HA coating method in conditions allowing the incorporation of protein-based drugs into the coating materials, while achieving a mechanical stable coating on Ti implant. HA coatings were deposited on six different groups of Ti surfaces: control (no pretreatment), pretreated with alkali, acid, heat at 800°C, grit blasted with Al2O3, and grit blasted followed by heat treatment. HA coating was prepared using a two-step procedure. First step was the chemical deposition of a monetite coating on Ti substrate in acidic condition at 75°C and the second step was the hydrolysis of the monetite coating to HA. Coatings were characterized by scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). The roughness of substrates and coatings was measured using profilometry technique. The mechanical stability of the coatings deposited on the pretreated substrates was assessed using scratch test. The coatings deposited on the grit-blasted Ti surface demonstrated superior adhesive properties with critical shearing stress 131.6 ± 0.2 MPa.


Subject(s)
Coated Materials, Biocompatible/chemistry , Durapatite/chemistry , Titanium/chemistry , Humans , Materials Testing , Microscopy, Electron, Scanning , Prostheses and Implants , Spectrometry, X-Ray Emission , Stress, Mechanical , Surface Properties , X-Ray Diffraction
16.
J Mater Sci Mater Med ; 22(1): 1-9, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21052792

ABSTRACT

Bioactive hydroxyapatite (HA) coating on titanium (Ti) implant can be used as a drug delivery device. A controlled release of drug around the implant requires the incorporation of drug into the coating material during the coating process. HA coating was prepared using a two-step procedure in conditions suitable for simultaneous incorporation of the protein-based drug into the coating material. Monetite coating was deposited on Ti substrate in acidic condition followed by the transformation of the monetite coating to HA. X-ray diffraction (XRD) confirmed the formation of the monetite phase at the first step of the coating preparation, which was transformed into HA at the second step. Fourier transform infrared spectroscopy demonstrated typical bands of a crystallized carbonated HA with A- and B-type substitution, which was confirmed by the XRD refinement of the structural parameters. Scanning electron microscope was used to observe the morphology of monetite and HA coatings. Adhesion of the coatings was measured using a scratch tester. The critical shearing stress was found to be 84.20 ± 1.27 MPa for the monetite coating, and 44.40 ± 2.39 MPa for the HA coating.


Subject(s)
Coated Materials, Biocompatible/analysis , Durapatite/analysis , Titanium/chemistry , Bone Morphogenetic Protein 2/administration & dosage , Bone Morphogenetic Protein 2/pharmacokinetics , Coated Materials, Biocompatible/chemical synthesis , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/metabolism , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/metabolism , Durapatite/chemistry , Durapatite/pharmacokinetics , Elastic Modulus , Electroplating/methods , Hardness Tests , Humans , Materials Testing , Microscopy, Electron, Scanning , Models, Biological , Spectroscopy, Fourier Transform Infrared , Surface Properties , Titanium/metabolism , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...