Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuromodulation ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38691076

ABSTRACT

OBJECTIVES: Deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VC/VS) is effective for treatment-resistant obsessive-compulsive disorder (OCD); however, DBS is associated with neurosurgical risks. Transcranial focused ultrasound (tFUS) is a newer form of noninvasive (ie, nonsurgical) stimulation that can modulate deeper regions, such as the VC/VS. tFUS parameters have just begun to be studied and have often not been compared in the same participants. We explored the effects of three VC/VS tFUS protocols and an entorhinal cortex (ErC) tFUS session on the VC/VS and cortico-striato-thalamo-cortical circuit (CSTC) in healthy individuals for later application to patients with OCD. MATERIALS AND METHODS: Twelve individuals participated in a total of 48 sessions of tFUS in this exploratory multisite, within-subject parameter study. We collected resting-state, reward task, and arterial spin-labeled (ASL) magnetic resonance imaging scans before and after ErC tFUS and three VC/VS tFUS sessions with different pulse repetition frequencies (PRFs), pulse widths (PWs), and duty cycles (DCs). RESULTS: VC/VS protocol A (PRF = 10 Hz, PW = 5 ms, 5% DC) was associated with increased putamen activation during a reward task (p = 0.003), and increased VC/VS resting-state functional connectivity (rsFC) with the anterior cingulate cortex (p = 0.022) and orbitofrontal cortex (p = 0.004). VC/VS protocol C (PRF = 125 Hz, PW = 4 ms, 50% DC) was associated with decreased VC/VS rsFC with the putamen (p = 0.017), and increased VC/VS rsFC with the globus pallidus (p = 0.008). VC/VS protocol B (PRF = 125 Hz, PW = 0.4 ms, 5% DC) was not associated with changes in task-related CSTC activation or rsFC. None of the protocols affected CSTC ASL perfusion. CONCLUSIONS: This study began to explore the multidimensional parameter space of an emerging form of noninvasive brain stimulation, tFUS. Our preliminary findings in a small sample suggest that VC/VS tFUS should continue to be investigated for future noninvasive treatment of OCD.

2.
Brain Stimul ; 17(2): 312-320, 2024.
Article in English | MEDLINE | ID: mdl-38447773

ABSTRACT

BACKGROUND: Current noninvasive brain stimulation methods are incapable of directly modulating subcortical brain regions critically involved in psychiatric disorders. Transcranial Focused Ultrasound (tFUS) is a newer form of noninvasive stimulation that could modulate the amygdala, a subcortical region implicated in fear. OBJECTIVE: We investigated the effects of active and sham tFUS of the amygdala on fear circuit activation, skin conductance responses (SCR), and self-reported anxiety during a fear-inducing task. We also investigated amygdala tFUS' effects on amygdala-fear circuit resting-state functional connectivity. METHODS: Thirty healthy individuals were randomized in this double-blinded study to active or sham tFUS of the left amygdala. We collected fMRI scans, SCR, and self-reported anxiety during a fear-inducing task (participants viewed red or green circles which indicated the risk of receiving an aversive stimulus), as well as resting-state scans, before and after tFUS. RESULTS: Compared to sham tFUS, active tFUS was associated with decreased (pre to post tFUS) blood-oxygen-level-dependent fMRI activation in the amygdala (F(1,25) = 4.86, p = 0.04, η2 = 0.16) during the fear task, and lower hippocampal (F(1,27) = 4.41, p = 0.05, η2 = 0.14), and dorsal anterior cingulate cortex (F(1,27) = 6.26, p = 0.02; η2 = 0.19) activation during the post tFUS fear task. The decrease in amygdala activation was correlated with decreased subjective anxiety (r = 0.62, p = 0.03). There was no group effect in SCR changes from pre to post tFUS (F(1,23) = 0.85, p = 0.37). The active tFUS group also showed decreased amygdala-insula (F(1,28) = 4.98, p = 0.03) and amygdala-hippocampal (F(1,28) = 7.14, p = 0.01) rsFC, and increased amygdala-ventromedial prefrontal cortex (F(1,28) = 3.52, p = 0.05) resting-state functional connectivity. CONCLUSIONS: tFUS can change functional connectivity and brain region activation associated with decreased anxiety. Future studies should investigate tFUS' therapeutic potential for individuals with clinical levels of anxiety.


Subject(s)
Amygdala , Fear , Galvanic Skin Response , Magnetic Resonance Imaging , Humans , Fear/physiology , Male , Amygdala/physiology , Amygdala/diagnostic imaging , Female , Adult , Double-Blind Method , Young Adult , Galvanic Skin Response/physiology , Anxiety/physiopathology , Anxiety/diagnostic imaging , Neural Pathways/physiology , Neural Pathways/diagnostic imaging
3.
Biol Psychiatry ; 96(2): 101-113, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38141909

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) is a promising treatment option for treatment-refractory obsessive-compulsive disorder (OCD). Several stimulation targets have been used, mostly in and around the anterior limb of the internal capsule and ventral striatum. However, the precise target within this region remains a matter of debate. METHODS: Here, we retrospectively studied a multicenter cohort of 82 patients with OCD who underwent DBS of the ventral capsule/ventral striatum and mapped optimal stimulation sites in this region. RESULTS: DBS sweet-spot mapping performed on a discovery set of 58 patients revealed 2 optimal stimulation sites associated with improvements on the Yale-Brown Obsessive Compulsive Scale, one in the anterior limb of the internal capsule that overlapped with a previously identified OCD-DBS response tract and one in the region of the inferior thalamic peduncle and bed nucleus of the stria terminalis. Critically, the nucleus accumbens proper and anterior commissure were associated with beneficial but suboptimal clinical improvements. Moreover, overlap with the resulting sweet- and sour-spots significantly estimated variance in outcomes in an independent cohort of 22 patients from 2 additional DBS centers. Finally, beyond obsessive-compulsive symptoms, stimulation of the anterior site was associated with optimal outcomes for both depression and anxiety, while the posterior site was only associated with improvements in depression. CONCLUSIONS: Our results suggest how to refine targeting of DBS in OCD and may be helpful in guiding DBS programming in existing patients.


Subject(s)
Deep Brain Stimulation , Internal Capsule , Obsessive-Compulsive Disorder , Humans , Obsessive-Compulsive Disorder/therapy , Deep Brain Stimulation/methods , Male , Female , Adult , Retrospective Studies , Middle Aged , Internal Capsule/diagnostic imaging , Ventral Striatum/diagnostic imaging , Ventral Striatum/physiopathology , Treatment Outcome , Young Adult
4.
Focus (Am Psychiatr Publ) ; 20(1): 55-63, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35746939

ABSTRACT

In deep brain stimulation (DBS), a neurostimulation device is implanted to generate electrical fields in targeted deep brain regions in order to affect circuits associated with neuropsychiatric illness for potential therapeutic benefit. The development of DBS has followed a decades-long history of psychiatric neurosurgery, with advances in pacemakers and spinal neurostimulation devices allowing for the use of DBS in the treatment of neuropsychiatric disorders. Currently, deep brain stimulation for psychiatric illness has been approved by the U.S. Food and Drug Administration for the treatment of intractable obsessive-compulsive disorder, through a Humanitarian Device Exemption. The use of DBS for treatment-resistant depression is another promising application of this technology. Several potential targets of DBS have shown promise for treating neuropsychiatric illness, but few have demonstrated efficacy in randomized controlled trials. Future directions for DBS research will likely include modified trial designs, refined targets, the use of tractography for more specific and individualized targeting, and development of closed-loop DBS.

SELECTION OF CITATIONS
SEARCH DETAIL
...