Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 9(8): 1441-5, 2000.
Article in English | MEDLINE | ID: mdl-18262982

ABSTRACT

We employ a prediction model for moving object velocity and location estimation derived from Bayesian theory. The optical flow of a certain moving object depends on the history of its previous values. A joint optical flow estimation and moving object segmentation algorithm is used for the initialization of the tracking algorithm. The segmentation of the moving objects is determined by appropriately classifying the unlabeled and the occluding regions. Segmentation and optical flow tracking is used for predicting future frames.

2.
IEEE Trans Image Process ; 8(12): 1744-56, 1999.
Article in English | MEDLINE | ID: mdl-18267451

ABSTRACT

We propose a pattern classification based approach for simultaneous three-dimensional (3-D) object modeling and segmentation in image volumes. The 3-D objects are described as a set of overlapping ellipsoids. The segmentation relies on the geometrical model and graylevel statistics. The characteristic parameters of the ellipsoids and of the graylevel statistics are embedded in a radial basis function (RBF) network and they are found by means of unsupervised training. A new robust training algorithm for RBF networks based on alpha-trimmed mean statistics is employed in this study. The extension of the Hough transform algorithm in the 3-D space by employing a spherical coordinate system is used for ellipsoidal center estimation. We study the performance of the proposed algorithm and we present results when segmenting a stack of microscopy images.

3.
IEEE Trans Image Process ; 7(5): 693-702, 1998.
Article in English | MEDLINE | ID: mdl-18276285

ABSTRACT

Various approaches have been proposed for simultaneous optical flow estimation and segmentation in image sequences. In this study, the moving scene is decomposed into different regions with respect to their motion, by means of a pattern recognition scheme. The inputs of the proposed scheme are the feature vectors representing still image and motion information. Each class corresponds to a moving object. The classifier employed is the median radial basis function (MRBF) neural network. An error criterion function derived from the probability estimation theory and expressed as a function of the moving scene model is used as the cost function. Each basis function is activated by a certain image region. Marginal median and median of the absolute deviations from the median (MAD) estimators are employed for estimating the basis function parameters. The image regions associated with the basis functions are merged by the output units in order to identify moving objects.

4.
IEEE Trans Neural Netw ; 7(6): 1351-64, 1996.
Article in English | MEDLINE | ID: mdl-18263530

ABSTRACT

Radial basis functions (RBFs) consist of a two-layer neural network, where each hidden unit implements a kernel function. Each kernel is associated with an activation region from the input space and its output is fed to an output unit. In order to find the parameters of a neural network which embeds this structure we take into consideration two different statistical approaches. The first approach uses classical estimation in the learning stage and it is based on the learning vector quantization algorithm and its second-order statistics extension. After the presentation of this approach, we introduce the median radial basis function (MRBF) algorithm based on robust estimation of the hidden unit parameters. The proposed algorithm employs the marginal median for kernel location estimation and the median of the absolute deviations for the scale parameter estimation. A histogram-based fast implementation is provided for the MRBF algorithm. The theoretical performance of the two training algorithms is comparatively evaluated when estimating the network weights. The network is applied in pattern classification problems and in optical flow segmentation.

SELECTION OF CITATIONS
SEARCH DETAIL
...