Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Cent J ; 11(1): 46, 2017 May 30.
Article in English | MEDLINE | ID: mdl-29086828

ABSTRACT

BACKGROUND: Superabsorbent hydrogels show a large potential in a wide array of applications due to their unique properties. Carboxymethylcellulose (CMC) is a commercially available water-soluble cellulose derivative of major interest in the hydrogel synthesis. High-energy irradiation allows the chemical crosslinking without the use of crosslinking agents, while the introduction of other natural or synthetic polymers offers a convenient way to modify the gels. In this study we examined the effect of the addition of starch, a low-cost renewable polysaccharide, on the properties of carboxymethylcellulose-based hydrogels. RESULTS: Superabsorbent gels were prepared by gamma irradiation from aqueous mixtures of carboxymethylcellulose and starch. The partial replacement of CMC with starch improved the gel fraction, while a slight increase in the water uptake was also observed. However, very high starch content had a negative impact on the gelation, resulting in a decrease in gel fraction. Moreover, higher solute concentrations were preferred for the gelation of CMC/starch than for pure CMC. Hydrogels containing 30% starch showed the best properties: a water uptake of ~350 gwater/ggel was achieved with ~55% gel fraction synthesized from 15 w/w% solutions at 20 kGy. Heterogeneous gel structure was observed: the starch granules and fragments were dispersed in the CMC matrix. The swelling of CMC/starch gels showed a high sensitivity to the ionic strength in water due to the CMC component. However, the mixed gels are less sensitive to the ionic strength than pure CMC gels. CONCLUSIONS: The introduction of starch to carboxymethylcellulose systems led to improved properties. Such gels showed higher water uptake, especially in an environment with high electrolyte concentration. CMC/starch hydrogels may offer a cheaper, superior alternative compared to pure cellulose derivative-based gels depending on the application.

2.
Carbohydr Polym ; 166: 300-308, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28385236

ABSTRACT

Hydroxyethylcellulose (HEC)/acrylic acid (AAc) copolymer gels with superabsorbent properties were synthesized from aqueous solutions by radiation-initiated crosslinking. The effect of the acrylic acid content on gel properties was determined at different synthesis conditions. The partial replacement of the cellulose derivative with acrylic acid improved the gelation, leading to higher gel fraction and lower water uptake even in very low concentrations (1-5%). In the presence of acrylic acid lower dose and solute concentration was required for the gel synthesis. The molecular properties of the hydroxyethylcellulose also had a major effect on the gelation: higher molecular mass resulted in better gel properties. The acrylic acid also affected the electrolyte sensitivity of the hydrogels: while pure HEC gels were unaffected by the ionic strength of the solvent, the water uptake of HEC/AAc gels decreased with the salt concentration. The sensitivity also depended on the acrylic acid ratio.

SELECTION OF CITATIONS
SEARCH DETAIL
...