Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Clin Pharmacol ; 89(3): 1089-1098, 2023 03.
Article in English | MEDLINE | ID: mdl-36178950

ABSTRACT

AIMS: Patients on treatment with oral fixed dose imatinib are frequently under- or overexposed to the drug. We investigated the association between the gene activity score (GAS) of imatinib-metabolizing cytochromes (CYP3A4, CYP3A5, CYP2D6, CYP2C9, CYP2C19, CYP2C8) and imatinib and nor-imatinib exposure. We also investigated the impact of concurrent drug-drug-interactions (DDIs) on the association between GAS and imatinib exposure. METHODS: Serial plasma samples were collected from 33 GIST patients treated with imatinib 400 mg daily within a prospective clinical trial. Imatinib and nor-imatinib Ctrough were quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Genetic polymorphisms with a functional impact on imatinib-metabolizing cytochromes were identified and a GAS was calculated for each gene. A DDI-adjusted GAS was also generated. RESULTS: Imatinib and nor-imatinib Ctrough were measured in 161 plasma samples. CYP2D6 GAS and metabolizer status based on genotype were associated with imatinib and (imatinib + nor-imatinib) Ctrough . CYP2D6 poor and intermediate metabolizers were predicted to have a lower nor-imatinib/imatinib metabolic ratio than normal metabolizers (0.197 and 0.193 vs. 0.247, P = .0205), whereas CYP2C8*3 carriers had a higher ratio than CYP2C8*1/*1 patients (0.263 vs. 0.201, P = .0220). CYP2C9 metabolizer status was inversely related to the metabolic ratio with an effect probably driven by the linkage disequilibrium between CYP2C9*2 and CYP2C8*3. The CYP2D6 DDI-adjusted GAS was still predictive of imatinib exposure. CONCLUSIONS: These findings highlight that CYP2D6 plays a major role in imatinib pharmacokinetics, but other players (i.e., CYP2C8) may influence imatinib exposure. These findings could drive the selection of patients more susceptible to imatinib under- or overexposure who could be candidates for personalized treatment and intensified monitoring strategies.


Subject(s)
Cytochrome P-450 CYP2D6 , Gastrointestinal Stromal Tumors , Humans , Cytochrome P-450 CYP2D6/genetics , Imatinib Mesylate/adverse effects , Imatinib Mesylate/pharmacokinetics , Cytochrome P-450 CYP2C8/genetics , Pharmacogenetics , Cytochrome P-450 CYP2C9/genetics , Prospective Studies , Chromatography, Liquid , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Tandem Mass Spectrometry , Cytochromes/genetics , Genotype , Cytochrome P-450 CYP2C19/genetics
2.
Front Pharmacol ; 11: 36, 2020.
Article in English | MEDLINE | ID: mdl-32116712

ABSTRACT

The standard of care for the first-line treatment of advanced gastrointestinal stromal tumor (GIST) is represented by imatinib, which is given daily at a standard dosage until tumor progression. Resistance to imatinib commonly occurs through the clonal selection of genetic mutations in the tumor DNA, and an increase in imatinib dosage was demonstrated to be efficacious to overcome imatinib resistance. Wild-type GISTs, which do not display KIT or platelet-derived growth factor receptor alpha (PDGFRA) mutations, are usually primarily insensitive to imatinib and tend to rapidly relapse in course of treatment. Here we report the case of a 53-year-old male patient with gastric GIST who primarily did not respond to imatinib and that, despite the administration of an increased imatinib dose, led to patient death. By using a deep next-generation sequencing barcode-aware approach, we analyzed a panel of actionable cancer-related genes in the patient cfDNA to investigate somatic changes responsible for imatinib resistance. We identified, in two serial circulating tumor DNA (ctDNA) samples, a sharp increase in the allele frequency of a never described TP53 mutation (c.560-7_560-2delCTCTTAinsT) located in a splice acceptor site and responsible for a protein loss of function. The same TP53 mutation was retrospectively identified in the primary tumor by digital droplet PCR at a subclonal frequency (0.1%). The mutation was detected at a very high allelic frequency (99%) in the metastatic hepatic lesion, suggesting a rapid clonal selection of the mutation during tumor progression. Imatinib plasma concentration at steady state was above the threshold of 760 ng/ml reported in the literature for the minimum efficacious concentration. The de novo TP53 (c.560-7_560-2delCTCTTAinsT) mutation was in silico predicted to be associated with an aberrant RNA splicing and with an aggressive phenotype which might have contributed to a rapid disease spread despite the administration of an increased imatinib dosage. This result underlies the need of a better investigation upon the role of TP53 in the pathogenesis of GISTs and sustains the use of next-generation sequencing (NGS) in cfDNA for the identification of novel genetic markers in wild-type GISTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...